

Efficient second-order online kernel learning with adaptive embedding

Daniele Calandriello, Alessandro Lazaric, Michal Valko SequeL, Inria Lille – Nord Europe

COLT impromptu talks, July 2017, La France avance!

Online Kernel Learning (OKL)

Online game between learner and adversary, at each round $t \in [T]$

- 1 the adversary reveals a new point $arphi(\mathbf{x}_t) = oldsymbol{\phi}_t \in \mathcal{H}$
- 2 the learner chooses a function $f_{\mathbf{w}_t}$ and predicts $f_{\mathbf{w}_t}(\mathbf{x}_t) = \varphi(\mathbf{x}_t)^{\mathsf{T}} \mathbf{w}_t$,
- 3 the adversary reveals the curved loss ℓ_t ,
- 4 the learner suffers $\ell_t(\phi_t^{\mathsf{T}} \mathbf{w}_t)$ and observes the associated gradient \mathbf{g}_t .

Online Kernel Learning (OKL)

Online game between learner and adversary, at each round $t \in [T]$

- 1 the adversary reveals a new point $arphi(\mathbf{x}_t) = oldsymbol{\phi}_t \in \mathcal{H}$
- 2 the learner chooses a function $f_{\mathbf{w}_t}$ and predicts $f_{\mathbf{w}_t}(\mathbf{x}_t) = \varphi(\mathbf{x}_t)^{\mathsf{T}} \mathbf{w}_t$,
- 3 the adversary reveals the curved loss ℓ_t ,
- 4 the learner suffers $\ell_t(\phi_t^{\mathsf{T}} \mathbf{w}_t)$ and observes the associated gradient \mathbf{g}_t .

Kernel

$$\begin{split} \varphi(\cdot) &: \mathcal{X} \to \mathcal{H} \text{ is the high-dimensional (possibly infinite) map} \\ \boldsymbol{\Phi}_t &= [\phi_1, \dots, \phi_t], \ \boldsymbol{\Phi}_t^{\mathsf{T}} \boldsymbol{\Phi}_t = \mathbf{K}_t \text{ (kernel trick)} \\ \mathbf{g}_t &= \ell_t'(\phi_t^{\mathsf{T}} \mathbf{w}_t) \phi_t := \dot{g}_t \phi_t \end{split}$$

Online Kernel Learning (OKL)

Online game between learner and adversary, at each round $t \in [T]$

- 1 the adversary reveals a new point $arphi(\mathbf{x}_t) = oldsymbol{\phi}_t \in \mathcal{H}$
- 2 the learner chooses a function $f_{\mathbf{w}_t}$ and predicts $f_{\mathbf{w}_t}(\mathbf{x}_t) = \varphi(\mathbf{x}_t)^{\mathsf{T}} \mathbf{w}_t$,
- 3 the adversary reveals the curved loss ℓ_t ,
- 4 the learner suffers $\ell_t(\phi_t^{\mathsf{T}} \mathbf{w}_t)$ and observes the associated gradient \mathbf{g}_t .

Kernel

$$\begin{split} \varphi(\cdot) &: \mathcal{X} \to \mathcal{H} \text{ is the high-dimensional (possibly infinite) map} \\ \boldsymbol{\Phi}_t &= [\phi_1, \dots, \phi_t], \ \boldsymbol{\Phi}_t^{\mathsf{T}} \boldsymbol{\Phi}_t = \mathbf{K}_t \text{ (kernel trick)} \\ \mathbf{g}_t &= \ell_t'(\phi_t^{\mathsf{T}} \mathbf{w}_t) \phi_t := \dot{g}_t \phi_t \end{split}$$

Learning to minimize regret $R(\mathbf{w}) = \sum_{t=1}^{T} \ell_t(\phi_t \mathbf{w}_t) - \ell_t(\phi_t \mathbf{w})$ and compete with best-in-hindsight $\mathbf{w}^* := \arg \min_{\mathbf{w} \in \mathcal{H}} \sum_{t=1}^{T} \ell_t(\phi_t \mathbf{w})$

Curved losses?

We assume the losses ℓ_t are scalar Lipschitz

```
|\ell_t'(z)| \leq L whenever |z| \leq C
```

and curved

$$\ell_t(\boldsymbol{\phi}_t^{^{\mathsf{T}}}\mathbf{w}) \geq \ell_t(\boldsymbol{\phi}_t^{^{\mathsf{T}}}\mathbf{u}) +
abla \ell_t(\boldsymbol{\phi}_t^{^{\mathsf{T}}}\mathbf{u})^{^{\mathsf{T}}}(\mathbf{w}-\mathbf{u}) + \sigma \left(
abla \ell_t(\boldsymbol{\phi}_t^{^{\mathsf{T}}}\mathbf{u})^{^{\mathsf{T}}}(\mathbf{w}-\mathbf{u})
ight)^2.$$

Efficient second-order online kernel learning with adaptive embedding

Curved losses?

We assume the losses ℓ_t are scalar Lipschitz

```
|\ell_t'(z)| \leq L whenever |z| \leq C
```

and curved

$$\ell_t(\boldsymbol{\phi}_t^{^{\mathrm{T}}}\mathbf{w}) \geq \ell_t(\boldsymbol{\phi}_t^{^{\mathrm{T}}}\mathbf{u}) +
abla \ell_t(\boldsymbol{\phi}_t^{^{\mathrm{T}}}\mathbf{u})^{^{\mathrm{T}}}(\mathbf{w}-\mathbf{u}) + \sigma \left(
abla \ell_t(\boldsymbol{\phi}_t^{^{\mathrm{T}}}\mathbf{u})^{^{\mathrm{T}}}(\mathbf{w}-\mathbf{u})
ight)^2.$$

You already use curved losses

weaker than strong convexity

 \vdash strongly convex only along $\nabla \ell_t(\phi_t^{\mathsf{T}} \mathbf{u})$

satisfied by exp-concave losses

→ squared loss, squared hinge-loss

Second-Order OKL (Kernel Online Newton Step)

Second-Order Gradient Descent

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \mathbf{A}_t^{-1} \mathbf{g}_t, \qquad \mathbf{A}_t = \sum_{s=1}^t \sigma \mathbf{g}_t \mathbf{g}_t^{\mathsf{T}} + \alpha \mathbf{I}$$

+

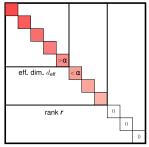
If $\varphi(\mathbf{x}) = \mathbf{x} : \mathbb{R}^d \to \mathbb{R}^d$ is the identity, Online Newton Step Hazan et al. 2006 $\vdash \mathcal{O}(\mathbf{d}^2)$ time/space per-step (Bottleneck: storing and inverting $\mathbf{X}_t^{\mathsf{T}} \mathbf{X}_t$) $R(\mathbf{w}^*) \le \alpha \|\mathbf{w}^* - \mathbf{w}_0\|_2^2 + \mathbf{d}\log(\mathbf{T})$ Sketched-ONS fast approximation, but only for $\varphi(\mathbf{x})$ identity and low-rank $\mathbf{X}_t^{\mathsf{T}} \mathbf{X}_t$ Luo et al. 2016

Formally $d_{\text{eff}}^{T}(\frac{\alpha}{L\sigma})$ is an $\frac{\alpha}{L\sigma}$ soft-thresholded version of the rank defined as

$$d_{\text{eff}}^{T}\left(\frac{\alpha}{L\sigma}\right) = \text{Tr}\left(\mathbf{K}_{T}\left(\mathbf{K}_{T} + \frac{\alpha}{L\sigma}\mathbf{I}\right)^{-1}\right) = \sum_{t=1}^{T}\frac{\lambda_{t}}{\lambda_{t} + \frac{\alpha}{L\sigma}} \leq \text{Rank}(\mathbf{K}_{T}) = r$$

Formally $d_{\text{eff}}^{T}(\frac{\alpha}{L\sigma})$ is an $\frac{\alpha}{L\sigma}$ soft-thresholded version of the rank defined as

$$d_{\text{eff}}^{T}\left(\frac{\alpha}{L\sigma}\right) = \text{Tr}\left(\mathbf{K}_{T}\left(\mathbf{K}_{T} + \frac{\alpha}{L\sigma}\mathbf{I}\right)^{-1}\right) = \sum_{t=1}^{T}\frac{\lambda_{t}}{\lambda_{t} + \frac{\alpha}{L\sigma}} \leq \text{Rank}(\mathbf{K}_{T}) = r$$



dimension t

Formally $d_{\text{eff}}^{T}(\frac{\alpha}{L\sigma})$ is an $\frac{\alpha}{L\sigma}$ soft-thresholded version of the rank defined as

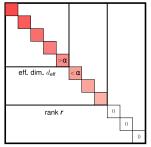
$$d_{\text{eff}}^{T}\left(\frac{\alpha}{L\sigma}\right) = \text{Tr}\left(\mathbf{K}_{T}\left(\mathbf{K}_{T} + \frac{\alpha}{L\sigma}\mathbf{I}\right)^{-1}\right) = \sum_{t=1}^{T}\frac{\lambda_{t}}{\lambda_{t} + \frac{\alpha}{L\sigma}} \leq \text{Rank}(\mathbf{K}_{T}) = r$$

dimension t

Intuitively, it quantifies the number of relevant orthogonal directions played by the adversary.

Formally $d_{\text{eff}}^{T}(\frac{\alpha}{L\sigma})$ is an $\frac{\alpha}{L\sigma}$ soft-thresholded version of the rank defined as

$$d_{\text{eff}}^{T}\left(\frac{\alpha}{L\sigma}\right) = \text{Tr}\left(\mathbf{K}_{T}\left(\mathbf{K}_{T} + \frac{\alpha}{L\sigma}\mathbf{I}\right)^{-1}\right) = \sum_{t=1}^{T}\frac{\lambda_{t}}{\lambda_{t} + \frac{\alpha}{L\sigma}} \leq \text{Rank}(\mathbf{K}_{T}) = r$$

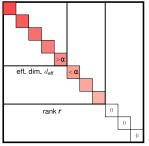


dimension t

A direction (eigenvector) is relevant if its importance (eigenvalue) is larger than the Lipschitz discounted regularization $\alpha/(L\sigma)$

Formally $d_{\text{eff}}^{T}(\frac{\alpha}{L\sigma})$ is an $\frac{\alpha}{L\sigma}$ soft-thresholded version of the rank defined as

$$d_{\text{eff}}^{T}\left(\frac{\alpha}{L\sigma}\right) = \text{Tr}\left(\mathbf{K}_{T}\left(\mathbf{K}_{T} + \frac{\alpha}{L\sigma}\mathbf{I}\right)^{-1}\right) = \sum_{t=1}^{T}\frac{\lambda_{t}}{\lambda_{t} + \frac{\alpha}{L\sigma}} \leq \text{Rank}(\mathbf{K}_{T}) = r$$



dimension t

Assume $\|\phi_t\| = 1$, then if all ϕ_t are orthogonal and $\alpha = \sqrt{T}$ then

$$d_{\rm eff}^{T}(\sqrt{T}) \sim \sqrt{T}$$

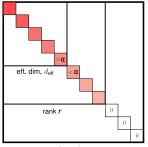
and

$$R(\mathbf{w}^*) \leq \sqrt{T} + d_{\mathsf{eff}}^T(\sqrt{T})\log(T) \sim \sqrt{T}$$

recover first order bound.

Formally $d_{\text{eff}}^{T}(\frac{\alpha}{L\sigma})$ is an $\frac{\alpha}{L\sigma}$ soft-thresholded version of the rank defined as

$$d_{\text{eff}}^{T}\left(\frac{\alpha}{L\sigma}\right) = \text{Tr}\left(\mathbf{K}_{T}\left(\mathbf{K}_{T} + \frac{\alpha}{L\sigma}\mathbf{I}\right)^{-1}\right) = \sum_{t=1}^{T}\frac{\lambda_{t}}{\lambda_{t} + \frac{\alpha}{L\sigma}} \leq \text{Rank}(\mathbf{K}_{T}) = r$$



dimension t

If all ϕ_t come from a bounded distribution or a finite set and $\alpha = 1$ then

$$d_{ ext{eff}}^{\,\mathcal{T}}(1)\sim\mathcal{O}(1)\leq r$$

is constant in T and

 $R(\mathbf{w}^*) \leq \mathcal{O}(1) + \mathcal{O}(1)\log(\mathcal{T}) \sim \log \mathcal{T}$

logarithmic in T.

How to achieve adaptive $d_{\text{eff}}^T(\alpha) \log(T)$ regret but without computational complexity depending on t?

How to achieve adaptive $d_{\text{eff}}^{T}(\alpha) \log(T)$ regret but without computational complexity depending on t?

Use approximate second order gradient in ${\cal H}$ Calandriello et al. 2017

 \downarrow $d_{\text{eff}}^{T}(\alpha) \log(T)$ regret, but runtime still depends on t

How to achieve adaptive $d_{\text{eff}}^T(\alpha) \log(T)$ regret but without computational complexity depending on t?

Use approximate second order gradient in ${\cal H}$ Calandriello et al. 2017

 \downarrow $d_{\text{eff}}^{T}(\alpha) \log(T)$ regret, but runtime still depends on t

Use exact second order gradient in approximate $\widetilde{\mathcal{H}}$

$$\sum_{t=1}^{T} \ell_t(\phi_t \widetilde{\mathbf{w}}_t) - \ell_t(\phi_t \mathbf{w}^*) = \sum_{t=1}^{T} \underbrace{\ell_t(\phi_t \widetilde{\mathbf{w}}_t) - \ell_t(\phi_t \overline{\mathbf{w}})}_{a} + \underbrace{\ell_t(\phi_t \overline{\mathbf{w}}) - \ell_t(\phi_t \mathbf{w}^*)}_{b}$$

Efficient second-order online kernel learning with adaptive embedding

ría

How to achieve adaptive $d_{\text{eff}}^{T}(\alpha) \log(T)$ regret but without computational complexity depending on t?

Use approximate second order gradient in ${\cal H}$ Calandriello et al. 2017

 \downarrow $d_{\text{eff}}^{T}(\alpha) \log(T)$ regret, but runtime still depends on t

Use exact second order gradient in approximate $\widetilde{\mathcal{H}}$

$$\sum_{t=1}^{T} \ell_t(\phi_t \widetilde{\mathbf{w}}_t) - \ell_t(\phi_t \mathbf{w}^*) = \sum_{t=1}^{T} \underbrace{\ell_t(\phi_t \widetilde{\mathbf{w}}_t) - \ell_t(\phi_t \overline{\mathbf{w}})}_{a} + \underbrace{\ell_t(\phi_t \overline{\mathbf{w}}) - \ell_t(\phi_t \mathbf{w}^*)}_{b}$$

(a) error between online and batch in $\widetilde{\mathcal{H}}$:

 \downarrow $d_{\text{eff}}^{T}(\alpha) \log(T)$ bound using KONS analysis

ría

How to achieve adaptive $d_{\text{eff}}^T(\alpha) \log(T)$ regret but without computational complexity depending on t?

Use approximate second order gradient in ${\cal H}$ Calandriello et al. 2017

 \downarrow $d_{\text{eff}}^{T}(\alpha) \log(T)$ regret, but runtime still depends on t

Use exact second order gradient in approximate $\widetilde{\mathcal{H}}$

$$\sum_{t=1}^{T} \ell_t(\phi_t \widetilde{\mathbf{w}}_t) - \ell_t(\phi_t \mathbf{w}^*) = \sum_{t=1}^{T} \underbrace{\ell_t(\phi_t \widetilde{\mathbf{w}}_t) - \ell_t(\phi_t \overline{\mathbf{w}})}_{a} + \underbrace{\ell_t(\phi_t \overline{\mathbf{w}}) - \ell_t(\phi_t \mathbf{w}^*)}_{b}$$

(a) error between online and batch in $\widetilde{\mathcal{H}}$:

 \downarrow $d_{\text{eff}}^{T}(\alpha) \log(T)$ bound using KONS analysis

(b) error between $\overline{\mathbf{w}}$ best in $\widetilde{\mathcal{H}}$ and \mathbf{w}^* best in \mathcal{H} : bound how?

 $\widetilde{\mathcal{H}}$ cannot be fixed

→ the adversary will find orthogonal points and exploit this

 $\widetilde{\mathcal{H}}$ cannot be fixed

 \vdash the adversary will find orthogonal points and exploit this

Use Nyström approximation instead and adapt it online $\stackrel{\leftarrow}{\rightarrow} \widetilde{\mathcal{H}}_t = \text{Span}(\mathcal{I}_t) \text{ defined using } m_t \text{ inducing points } \mathcal{I}_t = \{\phi_s\}_{s=1}^{m_t}$ If the adversary plays a "sufficiently orthogonal" ϕ_{t_t} add it to \mathcal{I}_{t+1}

 $\widetilde{\mathcal{H}}$ cannot be fixed

 \vdash the adversary will find orthogonal points and exploit this

Use Nyström approximation instead and adapt it online $\stackrel{\leftarrow}{\rightarrow} \widetilde{\mathcal{H}}_t = \text{Span}(\mathcal{I}_t) \text{ defined using } m_t \text{ inducing points } \mathcal{I}_t = \{\phi_s\}_{s=1}^{m_t}$ If the adversary plays a "sufficiently orthogonal" ϕ_t , add it to \mathcal{I}_{t+1}

 $\widetilde{\mathcal{H}}_t$ is finite dimensional: runtime independent of t \vdash Easy to embed (project) points as

$$\widetilde{arphi}(\cdot) = \mathbf{\Sigma}^{-1} \mathbf{U}^{^{\intercal}} \mathbf{\Phi}_{\mathcal{I}}^{^{\intercal}} arphi(\cdot) : \mathbb{R}^{d}
ightarrow \mathbb{R}^{m_{t}}$$

with $\mathbf{K}_{\mathcal{I}} = \mathbf{\Phi}_{\mathcal{I}}^{^{\mathsf{T}}} \mathbf{\Phi}_{\mathcal{I}} = \mathbf{U} \mathbf{\Sigma} \mathbf{\Sigma} \mathbf{U}^{^{\mathsf{T}}}$

 $\mathcal{O}(m_t^2)$ time/space cost to run <code>exact KONS</code> in $\widetilde{\mathcal{H}}_t$

"sufficiently orthogonal" is measured using γ -ridge leverage scores $\mathbb{P}(\text{include } \phi_t \text{ in } \mathcal{I}_t) \sim \phi_t^{\mathsf{T}} \phi_t - \phi_t^{\mathsf{T}} (\mathbf{\Phi}_{\mathcal{I}_{t-1}} \mathbf{\Phi}_{\mathcal{I}_{t-1}}^{\mathsf{T}} + \gamma \mathbf{I})^{-1} \phi_t$ Also computable in m_t^2 time.

"sufficiently orthogonal" is measured using γ -ridge leverage scores $\mathbb{P}(\text{include } \phi_t \text{ in } \mathcal{I}_t) \sim \phi_t^{\mathsf{T}} \phi_t - \phi_t^{\mathsf{T}} (\mathbf{\Phi}_{\mathcal{I}_{t-1}} \mathbf{\Phi}_{\mathcal{I}_{t-1}}^{\mathsf{T}} + \gamma \mathbf{I})^{-1} \phi_t$ Also computable in m_t^2 time.

Guarantees that Calandriello et al. 2017 $m_t \leq d_{\text{eff}}^t(\gamma) \log^2(T) \quad (\text{space/time}) , \quad \mathbf{K}_t - \widetilde{\mathbf{K}}_t \preceq \gamma \mathbf{I} \quad (\text{accuracy})$

Online/batch error

Use KONS guarantees to bound $\sum_{t=1}^{T} \ell_t(\phi_t \widetilde{\mathbf{w}}_t) - \ell_t(\phi_t \overline{\mathbf{w}})$ separately for each $\widetilde{\mathcal{H}}_t$ and associated $\overline{\mathbf{w}}_j$

$$\sum_{t=1}^{T} \ell_t(\phi_t \widetilde{\mathbf{w}}_t) - \ell_t(\phi_t \overline{\mathbf{w}}) \le Jd_{\text{eff}}^T(\alpha/(L\sigma))\log(T) + \sum_{j=1}^{J} \underbrace{\alpha \|\overline{\mathbf{w}}_j - \mathbf{w}_{t_j}\|_2^2}_{\text{start costs}}$$

Online/batch error

Use KONS guarantees to bound $\sum_{t=1}^{T} \ell_t(\phi_t \widetilde{\mathbf{w}}_t) - \ell_t(\phi_t \overline{\mathbf{w}})$ separately for each $\widetilde{\mathcal{H}}_t$ and associated $\overline{\mathbf{w}}_j$

$$\sum_{t=1}^{T} \ell_t(\phi_t \widetilde{\mathbf{w}}_t) - \ell_t(\phi_t \overline{\mathbf{w}}) \le Jd_{\text{eff}}^T(\alpha/(L\sigma))\log(T) + \sum_{j=1}^{J} \underbrace{\alpha \|\overline{\mathbf{w}}_j - \mathbf{w}_{t_j}\|_2^2}_{\text{start costs}}$$

Every time we change $\widetilde{\mathcal{H}}$ we pay $\alpha \|\overline{\mathbf{w}}_j - \mathbf{w}_{t_j}\|_2^2$

 \vdash the adversary can influence \mathbf{w}_{t_j} and make it large

Online/batch error

Use KONS guarantees to bound $\sum_{t=1}^{T} \ell_t(\phi_t \widetilde{\mathbf{w}}_t) - \ell_t(\phi_t \overline{\mathbf{w}})$ separately for each $\widetilde{\mathcal{H}}_t$ and associated $\overline{\mathbf{w}}_j$

$$\sum_{t=1}^{T} \ell_t(\phi_t \widetilde{\mathbf{w}}_t) - \ell_t(\phi_t \overline{\mathbf{w}}) \le Jd_{\text{eff}}^T(\alpha/(L\sigma))\log(T) + \sum_{j=1}^{J} \underbrace{\alpha \|\overline{\mathbf{w}}_j - \mathbf{w}_{t_j}\|_2^2}_{\text{start costs}}$$

Every time we change $\widetilde{\mathcal{H}}$ we pay $\alpha \|\overline{\mathbf{w}}_j - \mathbf{w}_{t_j}\|_2^2$ \mapsto the adversary can influence \mathbf{w}_{t_j} and make it large

Reset $\widetilde{\mathbf{w}}_t$ and $\widetilde{\mathbf{A}}_t$ when $\widetilde{\mathcal{H}}_t$ changes \downarrow Wasteful, but not too often. At most $J \leq d_{\text{eff}}^T(\gamma)$ times. Learning is preserved through $\widetilde{\mathcal{H}}_t$ that always improves Adaptive doubling trick

Final regret guarantees

For any curved loss

$$R(\mathbf{w}^*) \leq J\left(lpha \|\mathbf{w}^*\|_2^2 + d_{\mathsf{eff}}^{\mathcal{T}}\log(lpha/(L\sigma))
ight) + rac{\gamma}{lpha}\mathcal{T}$$

Final regret guarantees

For any curved loss

$${\mathcal R}({f w}^*) \leq J\left(lpha \|{f w}^*\|_2^2 + d_{\mathsf{eff}}^{\mathcal T} \log(lpha/(L\sigma))
ight) + rac{\gamma}{lpha} \mathcal T$$

Setting $\gamma = \alpha / T$ removes second term

 \vdash computational cost is $\mathcal{O}(d_{\text{eff}}^{T}(1/T)^{2})$, still small in many cases

Final regret guarantees

For any curved loss

$${\mathcal R}({f w}^*) \leq J\left(lpha \|{f w}^*\|_2^2 + d_{\mathsf{eff}}^{\mathcal T} \log(lpha/(L\sigma))
ight) + rac{\gamma}{lpha} \mathcal T$$

Setting $\gamma = \alpha/T$ removes second term ightarrow computational cost is $\mathcal{O}(d_{\text{eff}}^T(1/T)^2)$, still small in many cases

For squared loss only and $\gamma=\alpha$

$$R(\mathbf{w}^*) \leq J\left(\alpha \|\mathbf{w}^*\|_2^2 + d_{\text{eff}}^T \log(\alpha/(L\sigma))\right) + J\left(\sum_{t=1}^T \ell_t(\phi_t \mathbf{w}^*) + \alpha \|\mathbf{w}^*\|_2^2\right)$$

Last term $J(\sum_{t=1}^{T} \ell_t(\phi_t \mathbf{w}^*) + \alpha \|\mathbf{w}^*\|_2^2)$ replaces $\frac{\gamma}{\alpha} T$ \hookrightarrow regularized cumulative loss of \mathbf{w}^* if \mathcal{H} is good, very small

Efficient second-order online kernel learning with adaptive embedding

Conclusions

Algorithm	cadata $n = 20k, d = 8$			casp $n = 45k$, $d = 9$		
	Avg. Squared Loss	#SV	Time	Avg. Squared Loss	#SV	Time
FOGD	$0.04097\ \pm\ 0.00015$	30	—	0.08021 ± 0.00031	30	—
NOGD	0.03983 ± 0.00018	30	-	$0.07844\ \pm\ 0.00008$	30	_
PROS-N-KONS	$0.03095\ \pm\ 0.00110$	20	18.59	0.06773 ± 0.00105	21	40.73
CON-KONS	0.02850 ± 0.00174	19	18.45	0.06832 ± 0.00315	20	40.91
B-KONS	$0.03095\ \pm\ 0.00118$	19	18.65	0.06775 ± 0.00067	21	41.13
BATCH	0.02202 ± 0.00002	—	—	0.06100 ± 0.00003	—	—
Algorithm	slice $n = 53k$, $d = 385$			year $n = 463k, d = 90$		
	Avg. Squared Loss	#SV	Time	Avg. Squared Loss	#SV	Time
FOGD	0.00726 ± 0.00019	30	—	$0.01427\ \pm\ 0.00004$	30	—
NOGD	$0.02636\ \pm\ 0.00460$	30	-	$0.01427\ \pm\ 0.00004$	30	_
DUAL-SGD	-	_	_	$0.01440\ \pm\ 0.00000$	100	_
PROS-N-KONS	did not complete	—	—	$0.01450\ \pm\ 0.00014$	149	884.82
CON-KONS	did not complete	_	_	$0.01444\ \pm\ 0.00017$	147	889.42
B-KONS	0.00913 ± 0.00045	100	60	$0.01302 \ \pm \ 0.00006$	100	505.36
BATCH	0.00212 ± 0.00001	—	—	$0.01147\ \pm\ 0.00001$	—	—

Bibliography

Daniele Calandriello, Alessandro Lazaric, and Michal Valko. "Second-Order Kernel Online Convex Optimization with Adaptive Sketching". In: International Conference on Machine Learning. 2017.

Elad Hazan, Adam Kalai, Satyen Kale, and Amit Agarwal. "Logarithmic regret algorithms for online convex optimization". In: Conference on Learning Theory. Springer, 2006, pp. 499–513.

Haipeng Luo, Alekh Agarwal, Nicolo Cesa-Bianchi, and John Langford. "Efficient second-order online learning via sketching". In: <u>Neural Information Processing Systems</u>. 2016.

Efficient second-order online kernel learning with adaptive embedding