
COLT impromptu talks, July 2017, La France avance!

Efficient second-order online kernel learning
with adaptive embedding

Daniele Calandriello, Alessandro Lazaric, Michal Valko
SequeL, Inria Lille – Nord Europe

COLT 2017

Online Kernel Learning (OKL)

Online game between learner and adversary, at each round t ∈ [T]

1 the adversary reveals a new point ϕ(xt) = φt ∈ H
2 the learner chooses a function fwt and predicts fwt (xt) = ϕ(xt)

Twt ,
3 the adversary reveals the curved loss `t ,
4 the learner suffers `t(φ

T
t wt) and observes the associated gradient gt .

Kernel
ϕ(·) : X → H is the high-dimensional (possibly infinite) map
Φt = [φ1, . . . ,φt], ΦT

tΦt = Kt (kernel trick)
gt = `′t(φ

T
t wt)φt := ġtφt

Learning to minimize regret R(w) =
∑T

t=1 `t(φtwt)− `t(φtw)

and compete with best-in-hindsight w∗ := arg minw∈H
∑T

t=1 `t(φtw)

Efficient second-order online kernel learning with adaptive embedding SequeL - 2/12

Online Kernel Learning (OKL)

Online game between learner and adversary, at each round t ∈ [T]

1 the adversary reveals a new point ϕ(xt) = φt ∈ H
2 the learner chooses a function fwt and predicts fwt (xt) = ϕ(xt)

Twt ,
3 the adversary reveals the curved loss `t ,
4 the learner suffers `t(φ

T
t wt) and observes the associated gradient gt .

Kernel
ϕ(·) : X → H is the high-dimensional (possibly infinite) map
Φt = [φ1, . . . ,φt], ΦT

tΦt = Kt (kernel trick)
gt = `′t(φ

T
t wt)φt := ġtφt

Learning to minimize regret R(w) =
∑T

t=1 `t(φtwt)− `t(φtw)

and compete with best-in-hindsight w∗ := arg minw∈H
∑T

t=1 `t(φtw)

Efficient second-order online kernel learning with adaptive embedding SequeL - 2/12

Online Kernel Learning (OKL)

Online game between learner and adversary, at each round t ∈ [T]

1 the adversary reveals a new point ϕ(xt) = φt ∈ H
2 the learner chooses a function fwt and predicts fwt (xt) = ϕ(xt)

Twt ,
3 the adversary reveals the curved loss `t ,
4 the learner suffers `t(φ

T
t wt) and observes the associated gradient gt .

Kernel
ϕ(·) : X → H is the high-dimensional (possibly infinite) map
Φt = [φ1, . . . ,φt], ΦT

tΦt = Kt (kernel trick)
gt = `′t(φ

T
t wt)φt := ġtφt

Learning to minimize regret R(w) =
∑T

t=1 `t(φtwt)− `t(φtw)

and compete with best-in-hindsight w∗ := arg minw∈H
∑T

t=1 `t(φtw)

Efficient second-order online kernel learning with adaptive embedding SequeL - 2/12

Curved losses?

We assume the losses `t are scalar Lipschitz

|`′t(z)| ≤ L whenever |z | ≤ C

and curved

`t(φ
T
t w) ≥ `t(φ

T
t u) +∇`t(φ

T
t u)T(w− u) + σ (∇`t(φ

T
t u)T(w− u))2

.

You already use curved losses
weaker than strong convexity

strongly convex only along ∇`t(φ
T
t u)

satisfied by exp-concave losses
squared loss, squared hinge-loss

Efficient second-order online kernel learning with adaptive embedding SequeL - 3/12

Curved losses?

We assume the losses `t are scalar Lipschitz

|`′t(z)| ≤ L whenever |z | ≤ C

and curved

`t(φ
T
t w) ≥ `t(φ

T
t u) +∇`t(φ

T
t u)T(w− u) + σ (∇`t(φ

T
t u)T(w− u))2

.

You already use curved losses
weaker than strong convexity

strongly convex only along ∇`t(φ
T
t u)

satisfied by exp-concave losses
squared loss, squared hinge-loss

Efficient second-order online kernel learning with adaptive embedding SequeL - 3/12

Second-Order OKL (Kernel Online Newton Step)

Second-Order Gradient Descent

wt+1 = wt − A−1
t gt , At =

t∑
s=1

σgtgT
t + αI

If ϕ(x) = x : Rd → Rd is the identity, Online Newton Step Hazan et al. 2006

O(d2) time/space per-step (Bottleneck: storing and inverting XT
t Xt)

R(w∗) ≤ α‖w∗ −w0‖2
2 + d log(T)

Sketched-ONS fast approximation, but only for ϕ(x) identity and
low-rank XT

t Xt Luo et al. 2016

If ϕ(x) : Rd → H is arbitrary, Kernel-ONS Calandriello et al. 2017

O(t2) time/space per-step (Bottleneck: storing and inverting Kt)
R(w∗) ≤ α‖w∗ −w0‖2

2︸ ︷︷ ︸
a

+deff
T (α/(Lσ))log(T)︸ ︷︷ ︸

b

(a) start cost, (b) effective dimension (degrees of freedom) of data

Efficient second-order online kernel learning with adaptive embedding SequeL - 4/12

Effective Dimension

Formally dT
eff(

α
Lσ) is an α

Lσ soft-thresholded version of the rank defined as

dT
eff

(α
Lσ

)
= Tr

(
KT

(
KT +

α

Lσ I
)−1

)
=

T∑
t=1

λt
λt +

α
Lσ
≤ Rank(KT) = r

α

α

r

t

Intuitively, it quantifies the number of
relevant orthogonal directions played by the
adversary.

Efficient second-order online kernel learning with adaptive embedding SequeL - 5/12

Effective Dimension

Formally dT
eff(

α
Lσ) is an α

Lσ soft-thresholded version of the rank defined as

dT
eff

(α
Lσ

)
= Tr

(
KT

(
KT +

α

Lσ I
)−1

)
=

T∑
t=1

λt
λt +

α
Lσ
≤ Rank(KT) = r

α

α

r

t

Intuitively, it quantifies the number of
relevant orthogonal directions played by the
adversary.

Efficient second-order online kernel learning with adaptive embedding SequeL - 5/12

Effective Dimension

Formally dT
eff(

α
Lσ) is an α

Lσ soft-thresholded version of the rank defined as

dT
eff

(α
Lσ

)
= Tr

(
KT

(
KT +

α

Lσ I
)−1

)
=

T∑
t=1

λt
λt +

α
Lσ
≤ Rank(KT) = r

α

α

r

t

Intuitively, it quantifies the number of
relevant orthogonal directions played by the
adversary.

Efficient second-order online kernel learning with adaptive embedding SequeL - 5/12

Effective Dimension

Formally dT
eff(

α
Lσ) is an α

Lσ soft-thresholded version of the rank defined as

dT
eff

(α
Lσ

)
= Tr

(
KT

(
KT +

α

Lσ I
)−1

)
=

T∑
t=1

λt
λt +

α
Lσ
≤ Rank(KT) = r

α

α

r

t

A direction (eigenvector) is relevant if its
importance (eigenvalue) is larger than the
Lipschitz discounted regularization α/(Lσ)

Efficient second-order online kernel learning with adaptive embedding SequeL - 5/12

Effective Dimension

Formally dT
eff(

α
Lσ) is an α

Lσ soft-thresholded version of the rank defined as

dT
eff

(α
Lσ

)
= Tr

(
KT

(
KT +

α

Lσ I
)−1

)
=

T∑
t=1

λt
λt +

α
Lσ
≤ Rank(KT) = r

α

α

r

t

Assume ‖φt‖ = 1, then if all φt are
orthogonal and α =

√
T then

dT
eff(
√

T) ∼
√

T

and

R(w∗) ≤
√

T + dT
eff(
√

T) log(T) ∼
√

T

recover first order bound.

Efficient second-order online kernel learning with adaptive embedding SequeL - 5/12

Effective Dimension

Formally dT
eff(

α
Lσ) is an α

Lσ soft-thresholded version of the rank defined as

dT
eff

(α
Lσ

)
= Tr

(
KT

(
KT +

α

Lσ I
)−1

)
=

T∑
t=1

λt
λt +

α
Lσ
≤ Rank(KT) = r

α

α

r

t

If all φt come from a bounded distribution
or a finite set and α = 1 then

dT
eff(1) ∼ O(1) ≤ r

is constant in T and

R(w∗) ≤ O(1) +O(1) log(T) ∼ log T

logarithmic in T .

Efficient second-order online kernel learning with adaptive embedding SequeL - 5/12

Ideal method

How to achieve adaptive dT
eff(α) log(T) regret

but without computational complexity depending on t ?

Use approximate second order gradient in H Calandriello et al. 2017

dT
eff(α) log(T) regret, but runtime still depends on t

Use exact second order gradient in approximate H̃
T∑

t=1
`t(φtw̃t)− `t(φtw∗) =

T∑
t=1

`t(φtw̃t)− `t(φtw)︸ ︷︷ ︸
a

+ `t(φtw)− `t(φtw∗)︸ ︷︷ ︸
b

(a) error between online and batch in H̃:
dT

eff(α) log(T) bound using KONS analysis

(b) error between w best in H̃ and w∗ best in H: bound how?

Efficient second-order online kernel learning with adaptive embedding SequeL - 6/12

Ideal method

How to achieve adaptive dT
eff(α) log(T) regret

but without computational complexity depending on t ?

Use approximate second order gradient in H Calandriello et al. 2017

dT
eff(α) log(T) regret, but runtime still depends on t

Use exact second order gradient in approximate H̃
T∑

t=1
`t(φtw̃t)− `t(φtw∗) =

T∑
t=1

`t(φtw̃t)− `t(φtw)︸ ︷︷ ︸
a

+ `t(φtw)− `t(φtw∗)︸ ︷︷ ︸
b

(a) error between online and batch in H̃:
dT

eff(α) log(T) bound using KONS analysis

(b) error between w best in H̃ and w∗ best in H: bound how?

Efficient second-order online kernel learning with adaptive embedding SequeL - 6/12

Ideal method

How to achieve adaptive dT
eff(α) log(T) regret

but without computational complexity depending on t ?

Use approximate second order gradient in H Calandriello et al. 2017

dT
eff(α) log(T) regret, but runtime still depends on t

Use exact second order gradient in approximate H̃
T∑

t=1
`t(φtw̃t)− `t(φtw∗) =

T∑
t=1

`t(φtw̃t)− `t(φtw)︸ ︷︷ ︸
a

+ `t(φtw)− `t(φtw∗)︸ ︷︷ ︸
b

(a) error between online and batch in H̃:
dT

eff(α) log(T) bound using KONS analysis

(b) error between w best in H̃ and w∗ best in H: bound how?

Efficient second-order online kernel learning with adaptive embedding SequeL - 6/12

Ideal method

How to achieve adaptive dT
eff(α) log(T) regret

but without computational complexity depending on t ?

Use approximate second order gradient in H Calandriello et al. 2017

dT
eff(α) log(T) regret, but runtime still depends on t

Use exact second order gradient in approximate H̃
T∑

t=1
`t(φtw̃t)− `t(φtw∗) =

T∑
t=1

`t(φtw̃t)− `t(φtw)︸ ︷︷ ︸
a

+ `t(φtw)− `t(φtw∗)︸ ︷︷ ︸
b

(a) error between online and batch in H̃:
dT

eff(α) log(T) bound using KONS analysis

(b) error between w best in H̃ and w∗ best in H: bound how?

Efficient second-order online kernel learning with adaptive embedding SequeL - 6/12

Ideal method

How to achieve adaptive dT
eff(α) log(T) regret

but without computational complexity depending on t ?

Use approximate second order gradient in H Calandriello et al. 2017

dT
eff(α) log(T) regret, but runtime still depends on t

Use exact second order gradient in approximate H̃
T∑

t=1
`t(φtw̃t)− `t(φtw∗) =

T∑
t=1

`t(φtw̃t)− `t(φtw)︸ ︷︷ ︸
a

+ `t(φtw)− `t(φtw∗)︸ ︷︷ ︸
b

(a) error between online and batch in H̃:
dT

eff(α) log(T) bound using KONS analysis

(b) error between w best in H̃ and w∗ best in H: bound how?

Efficient second-order online kernel learning with adaptive embedding SequeL - 6/12

Subspace approximation error

H̃ cannot be fixed
the adversary will find orthogonal points and exploit this

Use Nyström approximation instead and adapt it online
H̃t = Span(It) defined using mt inducing points It = {φs}

mt
s=1

If the adversary plays a ”sufficiently orthogonal” φt , add it to It+1

H̃t is finite dimensional: runtime independent of t
Easy to embed (project) points as

ϕ̃(·) = Σ−1UTΦT
Iϕ(·) : Rd → Rmt

with KI = ΦT
IΦI = UΣΣUT

O(m2
t) time/space cost to run exact KONS in H̃t

Efficient second-order online kernel learning with adaptive embedding SequeL - 7/12

Subspace approximation error

H̃ cannot be fixed
the adversary will find orthogonal points and exploit this

Use Nyström approximation instead and adapt it online
H̃t = Span(It) defined using mt inducing points It = {φs}

mt
s=1

If the adversary plays a ”sufficiently orthogonal” φt , add it to It+1

H̃t is finite dimensional: runtime independent of t
Easy to embed (project) points as

ϕ̃(·) = Σ−1UTΦT
Iϕ(·) : Rd → Rmt

with KI = ΦT
IΦI = UΣΣUT

O(m2
t) time/space cost to run exact KONS in H̃t

Efficient second-order online kernel learning with adaptive embedding SequeL - 7/12

Subspace approximation error

H̃ cannot be fixed
the adversary will find orthogonal points and exploit this

Use Nyström approximation instead and adapt it online
H̃t = Span(It) defined using mt inducing points It = {φs}

mt
s=1

If the adversary plays a ”sufficiently orthogonal” φt , add it to It+1

H̃t is finite dimensional: runtime independent of t
Easy to embed (project) points as

ϕ̃(·) = Σ−1UTΦT
Iϕ(·) : Rd → Rmt

with KI = ΦT
IΦI = UΣΣUT

O(m2
t) time/space cost to run exact KONS in H̃t

Efficient second-order online kernel learning with adaptive embedding SequeL - 7/12

Subspace approximation error

“sufficiently orthogonal” is measured using γ-ridge leverage scores

P(include φt in It) ∼ φT
tφt − φT

t (ΦIt−1Φ
T
It−1

+ γI)−1φt

Also computable in m2
t time.

Guarantees that Calandriello et al. 2017

mt ≤ d t
eff(γ) log2(T) (space/time) , Kt − K̃t � γI (accuracy)

Efficient second-order online kernel learning with adaptive embedding SequeL - 8/12

Subspace approximation error

“sufficiently orthogonal” is measured using γ-ridge leverage scores

P(include φt in It) ∼ φT
tφt − φT

t (ΦIt−1Φ
T
It−1

+ γI)−1φt

Also computable in m2
t time.

Guarantees that Calandriello et al. 2017

mt ≤ d t
eff(γ) log2(T) (space/time) , Kt − K̃t � γI (accuracy)

Efficient second-order online kernel learning with adaptive embedding SequeL - 8/12

Online/batch error

Use KONS guarantees to bound
∑T

t=1 `t(φtw̃t)− `t(φtw)

separately for each H̃t and associated wj

T∑
t=1

`t(φtw̃t)− `t(φtw) ≤ JdT
eff(α/(Lσ)) log(T) +

J∑
j=1

α‖wj −wtj‖2
2︸ ︷︷ ︸

start costs

Every time we change H̃ we pay α‖wj −wtj‖2
2

the adversary can influence wtj and make it large

Reset w̃t and Ãt when H̃t changes
Wasteful , but not too often. At most J ≤ dT

eff(γ) times.
Learning is preserved through H̃t that always improves
Adaptive doubling trick

Efficient second-order online kernel learning with adaptive embedding SequeL - 9/12

Online/batch error

Use KONS guarantees to bound
∑T

t=1 `t(φtw̃t)− `t(φtw)

separately for each H̃t and associated wj

T∑
t=1

`t(φtw̃t)− `t(φtw) ≤ JdT
eff(α/(Lσ)) log(T) +

J∑
j=1

α‖wj −wtj‖2
2︸ ︷︷ ︸

start costs

Every time we change H̃ we pay α‖wj −wtj‖2
2

the adversary can influence wtj and make it large

Reset w̃t and Ãt when H̃t changes
Wasteful , but not too often. At most J ≤ dT

eff(γ) times.
Learning is preserved through H̃t that always improves
Adaptive doubling trick

Efficient second-order online kernel learning with adaptive embedding SequeL - 9/12

Online/batch error

Use KONS guarantees to bound
∑T

t=1 `t(φtw̃t)− `t(φtw)

separately for each H̃t and associated wj

T∑
t=1

`t(φtw̃t)− `t(φtw) ≤ JdT
eff(α/(Lσ)) log(T) +

J∑
j=1

α‖wj −wtj‖2
2︸ ︷︷ ︸

start costs

Every time we change H̃ we pay α‖wj −wtj‖2
2

the adversary can influence wtj and make it large

Reset w̃t and Ãt when H̃t changes
Wasteful , but not too often. At most J ≤ dT

eff(γ) times.
Learning is preserved through H̃t that always improves
Adaptive doubling trick

Efficient second-order online kernel learning with adaptive embedding SequeL - 9/12

Final regret guarantees

For any curved loss

R(w∗) ≤ J
(
α‖w∗‖2

2 + dT
eff log(α/(Lσ))

)
+
γ

α
T

Setting γ = α/T removes second term
computational cost is O(dT

eff(1/T)2), still small in many cases

For squared loss only and γ = α

R(w∗) ≤ J
(
α‖w∗‖2

2 + dT
eff log(α/(Lσ))

)
+ J

(T∑
t=1

`t(φtw∗) + α‖w∗‖2
2

)

Last term J(
∑T

t=1 `t(φtw∗) + α‖w∗‖2
2) replaces γ

αT
regularized cumulative loss of w∗

if H is good, very small

Efficient second-order online kernel learning with adaptive embedding SequeL - 10/12

Final regret guarantees

For any curved loss

R(w∗) ≤ J
(
α‖w∗‖2

2 + dT
eff log(α/(Lσ))

)
+
γ

α
T

Setting γ = α/T removes second term
computational cost is O(dT

eff(1/T)2), still small in many cases

For squared loss only and γ = α

R(w∗) ≤ J
(
α‖w∗‖2

2 + dT
eff log(α/(Lσ))

)
+ J

(T∑
t=1

`t(φtw∗) + α‖w∗‖2
2

)

Last term J(
∑T

t=1 `t(φtw∗) + α‖w∗‖2
2) replaces γ

αT
regularized cumulative loss of w∗

if H is good, very small

Efficient second-order online kernel learning with adaptive embedding SequeL - 10/12

Final regret guarantees

For any curved loss

R(w∗) ≤ J
(
α‖w∗‖2

2 + dT
eff log(α/(Lσ))

)
+
γ

α
T

Setting γ = α/T removes second term
computational cost is O(dT

eff(1/T)2), still small in many cases

For squared loss only and γ = α

R(w∗) ≤ J
(
α‖w∗‖2

2 + dT
eff log(α/(Lσ))

)
+ J

(T∑
t=1

`t(φtw∗) + α‖w∗‖2
2

)

Last term J(
∑T

t=1 `t(φtw∗) + α‖w∗‖2
2) replaces γ

αT
regularized cumulative loss of w∗

if H is good, very small

Efficient second-order online kernel learning with adaptive embedding SequeL - 10/12

Conclusions

Algorithm cadata n = 20k, d = 8 casp n = 45k, d = 9
Avg. Squared Loss #SV Time Avg. Squared Loss #SV Time

FOGD 0.04097 ± 0.00015 30 — 0.08021 ± 0.00031 30 —
NOGD 0.03983 ± 0.00018 30 — 0.07844 ± 0.00008 30 —
PROS-N-KONS 0.03095 ± 0.00110 20 18.59 0.06773 ± 0.00105 21 40.73
Con-KONS 0.02850 ± 0.00174 19 18.45 0.06832 ± 0.00315 20 40.91
B-KONS 0.03095 ± 0.00118 19 18.65 0.06775 ± 0.00067 21 41.13
BATCH 0.02202 ± 0.00002 — — 0.06100 ± 0.00003 — —

Algorithm slice n = 53k, d = 385 year n = 463k, d = 90
Avg. Squared Loss #SV Time Avg. Squared Loss #SV Time

FOGD 0.00726 ± 0.00019 30 — 0.01427 ± 0.00004 30 —
NOGD 0.02636 ± 0.00460 30 — 0.01427 ± 0.00004 30 —
Dual-SGD — — — 0.01440 ± 0.00000 100 —
PROS-N-KONS did not complete — — 0.01450 ± 0.00014 149 884.82
Con-KONS did not complete — — 0.01444 ± 0.00017 147 889.42
B-KONS 0.00913 ± 0.00045 100 60 0.01302 ± 0.00006 100 505.36
BATCH 0.00212 ± 0.00001 — — 0.01147 ± 0.00001 — —

Efficient second-order online kernel learning with adaptive embedding SequeL - 11/12

Bibliography

Daniele Calandriello, Alessandro Lazaric, and Michal Valko.
“Second-Order Kernel Online Convex Optimization with Adaptive
Sketching”. In: International Conference on Machine Learning.
2017.
Elad Hazan, Adam Kalai, Satyen Kale, and Amit Agarwal.

“Logarithmic regret algorithms for online convex optimization”. In:
Conference on Learning Theory. Springer, 2006, pp. 499–513.

Haipeng Luo, Alekh Agarwal, Nicolo Cesa-Bianchi, and
John Langford. “Efficient second-order online learning via
sketching”. In: Neural Information Processing Systems. 2016.

Efficient second-order online kernel learning with adaptive embedding SequeL - 12/12

