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Distributed sequential sampling for adaptive kernel DL

What is Dictionary Learning (DL)?

+

= +

+ +

+

Finding an accurate representation of the input data as a linear
combination of a small set of basic elements (atoms)

Representation/Unsupervised learning

“Most important open problem in ML” Y. LeCun, NIPS 2016
“Already solved” J. Schmidhuber, NIPS 2016
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Distributed sequential sampling for adaptive kernel DL

Why DL for kernel problems?

Kernel methods have huge scalability problem

Problem: for a dataset D with n samples
O(n2) time to construct kernel matrix K
O(n3) time to compute solution
O(n2) space to store it
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Why DL for kernel problems?

Kernel methods have huge scalability problem

Problem: for a dataset D with n samples
O(n2) time to construct kernel matrix K
O(n3) time to compute solution
O(n2) space to store it

Solution:
compute accurate, small dictionary I to represent D
compute approximate solution on I efficiently
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Why DL for kernel problems?

Problem: Existing DL methods guarantee either scalablility or accuracy

we want both

We present SQUEAK — a dictionary learning algorithm that guarantees

In all cases accurate reconstruction of the input
Adapts to the data:

on “easy” problems small O(n) space/time requirements
on “hard” problems not worse than storing whole input

Only local data access, distributed version with O(log(n)) runtime
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Distributed sequential sampling for adaptive kernel DL

We consider Positive Semi-Definite matrices

A = A1/2(A1/2)T =
n∑

i=1
ai aT

i Ã =
m∑

i=1
wi xi xT

i

Method wi xi Accuracy Space Time
Whole Input 1 ai FFFFF

PCA λi ui FFFFF FFFFF F
RLS (this) 1/τi ai FFFF FFFF FFF
Uniform n/m ai FF FF FFFF
Empty dictionary 0 0 FFFFF FFFFF
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Preliminaries: Setting and Kernels

Indexing [t] = {1, . . . , t}, notation K matrices, k vectors, k scalar
Dataset Dn = {xi}n

i=1, samples xi ∈ X (e.g., Rd )
Kernel function K(xi , xj) : X × X → R
Feature map ϕ(xi) : X → H = φi

Kernel trick
K(xi , xj) = 〈K(xi , ·),K(xj , ·)〉H = 〈ϕ(xi), ϕ(xj)〉H = φT

i φj

Feature matrix Φt = [φ1,φ2, . . . ,φt ] : Rt → H
Empirical kernel matrix Kt ∈ Rt×t = K[t],[t] = ΦT

t Φt

New column k[t−1],t ∈ Rt−1 = ΦT
t−1φt

Kernel at a point kt,t ∈ R = φT
t φt

Find a dictionary I = {(wj ,φj)}m
j=1 such that K̃ = f (I) close to K
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Preliminaries: Linear Algebra

(Full) Singular Value Decomposition Φ = VΣUT, Σ rectangular
Eigendecomposition ΦTΦ = UΣTΣUT = UΛUT = K

Matrix norms (if omitted, `-2 norm)

`-2 norm ‖A‖2 = sup
‖x‖2=1

‖Ax‖2 = max λi

Frobenius norm ‖A‖2
F =

∑
a2

i,j =
∑

λ2
i

Useful equality for arbitrary n ×m matrix (or operator)

ΦΦT(ΦΦT + γIn)
−1 = Φ(ΦTΦ+ γIm)

−1ΦT
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Example: Kernel Ridge Regression

ŵn = (Kn + γI)−1yn

ŷn = Knŵn = Kn(Kn + γI)−1yn = Pnyn

If we can have accurate low-rank approximations . . .

K̃n � Kn � K̃n +
γ

1− ε I

. . . then we can used them for to get good approximate solutions:

w̃n = (K̃n + γI)−1yn

R(w̃n) ≤
(

1 +
1

1− ε

)
R(ŵn)

O(n3)⇒ O(nm + m3) time to compute the approx. solution
O(n2)⇒ O(nm) space to store dictionary
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Reconstruction Guarantees

Given dataset Dn and dictionary In, the selection matrix Sn is defined as

∞

m∑

i=1
wiφiφ

T
i =

m∑

i=1
(
√

wiφi)(
√

wiφi)
T = ΦnSnST

n Φ
T
n
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Reconstruction guarantees

Consider the regularized projection Ψn

Ψn = ΦnΦ
T
n (ΦnΦ

T
n + γI)−1 = (ΦnΦ

T
n + γI)−1/2ΦnΦ

T
n (ΦnΦ

T
n + γI)−1/2

=
n∑

i=1
(ΦnΦ

T
n + γI)−1/2φiφ

T
i (ΦnΦ

T
n + γI)−1/2 =

n∑

i=1
ψiψ

T
i

Ψ̃n = (ΦnΦ
T
n + γI)−1/2ΦnSnST

n Φ
T
n (ΦnΦ

T
n + γI)−1/2 =

m∑

j=1
wjψjψ

T
j

An accurate dictionary satisfies

‖Ψn − Ψ̃n‖2 ≤ ε

equivalent to mixed additive/multiplicative error in quadratic form

(1− ε)ΦnΦ
T
n − εγI � ΦnSnST

n Φ
T
n � (1 + ε)ΦnΦ

T
n + εγI
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Reconstruction guarantees

Why would bounding ‖Ψn − Ψ̃n‖2 be useful?

‖Ψn − Ψ̃n‖2 = ‖(ΦnΦ
T
n + γI)−1/2Φn(I− SnST

n )Φn(ΦnΦ
T
n + γI)−1/2‖2

= ‖(ΣΣT + γI)−1/2ΣUT(I− SnST
n )UΣT(ΣΣT + γI)−1/2‖2

= ‖(Kn + γI)−1/2K1/2
n (I− SnST

n )K1/2
n (Kn + γI)−1/2‖2

= ‖Pn − P̃n‖2

with

Pn = Kn(Kn + γI)−1

P̃n = (Kn + γI)−1/2K1/2
n SnST

n K1/2
n (Kn + γI)−1/2
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Reconstruction guarantees

Why would bounding ‖Pn − P̃n‖2 be useful?
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ŵn = (Kn + γI)−1yn
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Reconstruction guarantees

Why would bounding ‖Pn − P̃n‖2 be useful?

We can compute accurate low rank approximations. Let

K̃n = KnSn(SnKnSn + γI)−1SnKn

then
‖Pn − P̃n‖2 ≤ ε⇒ K̃n � Kn � K̃n +

γ

1− ε I
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e.g., Kernel Ridge Regression
w̃n = (K̃n + γI)−1yn

R(w̃n) ≤
(

1 +
1

1− ε

)
R(ŵn)
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e.g., Kernel Ridge Regression* *Gaussian Processes

w̃n = (K̃n + γI)−1yn
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Reconstruction guarantees

Why would bounding ‖Pn − P̃n‖2 be useful?

We can compute accurate low rank approximations. Let

K̃n = KnSn(SnKnSn + γI)−1SnKn

then
‖Pn − P̃n‖2 ≤ ε⇒ K̃n � Kn � K̃n +

γ

1− ε I

e.g., Kernel PCA, Kn and K̃n have close leading eigenvalues/vectors
e.g., Kernel K -means can be formulated as a quadratic form

min
C

Tr(Kn − CCTKnCCT) ∼ min
C̃

Tr(K̃n − C̃C̃TK̃nC̃C̃T)
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Regularized Nyström reconstruction

K̃n = KnSn
(
ST

n KnSn + γI
)−1ST

n Kn

+

−1

C = KnSn

CT = STnKnW−1 = (STnKnSn + γIm)−1
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Distributed sequential sampling for adaptive kernel DL

How do we compute an accurate (‖Ψn − Ψ̃n‖2 ≤ ε) dictionary?

Sample m points w.p. pn,i , add to I with weight 1/pn,i (unbiased)

∞

? How to choose the sampling distribution?
? How to choose m?
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Ridge Leverage Scores and Effective Dimension

Definition
Given a kernel matrix Kn ∈ Rn×n, define

γ-RLS τn,i = en,i KT
n (Kn + γIn)

−1en,i

= φT
i (ΦnΦ

T
n + γI)−1φi (1)

effective dim. deff(γ)n =
∑n

i=1
τn,i = Tr

(
Kn(Kn + γIn)

−1) (2)
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Ridge Leverage Scores
Intuitively, RLS capture orthogonality

τn,i = en,i KT
n (Kn + γIn)

−1en,i = φT
i (ΦnΦ

T
n + γI)−1φi

If all φi are orthogonal, we have

τn,i = φT
i (ΦnΦ

T
n + γI)−1φi = φT

i (φiφ
T
i + γI)−1φi =

φT
i φi

φT
i φi + γ

∼ 1

If all φi are identical (collinear), we have

τn,i = φT
i (ΦnΦ

T
n + γI)−1φi = φT

i (nφiφ
T
i + γI)−1φi =

φT
i φi

nφT
i φi + γ

∼ 1
n

Given Φt−1, adding a new column to it can only reduce the RLS of
columns already in Φt−1

τt,i ≤ τt−1,i
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Effective Dimension
Intuitively, the effective dimension is a soft version of matrix rank

Given deff(γ)t−1, adding a new column to Φt−1 can only increase deff(γ)t

deff(γ)t ≥ deff(γ)t−1
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Nyström Sampling

Theorem (Alaoui, Mahoney, 2015)
Given γ be the Nyström regularization, ε the accuracy, δ the confidence.
If the dictionary In is computed using the sampling distribution pn,i ∝ τn,i and using
at least m columns

m ≥
(

2deff(γ)n

ε2

)
log
(n
δ

)
,

then with probability 1− δ

‖Pn − P̃n‖2 ≤ ε

Done!

If someone gave us the RLS

Computing τn,i = en,i KT
n (Kn + γIn)

−1en,i also requires storing and
inverting the full Kn
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Estimating RLS

Idea 1: Instead of computing exact RLS, compute good approximations

Idea 2: When all you have is a dictionary, you use the dictionary

Lemma
Assume that the dictionary It−1 is accurate, and let St be constructed by
adding (1,φt) to It−1. Then, denoting α = (1 + ε)/(1− ε), for all i
such that i ∈ {It−1 ∪ {t}},

τ̃t,i =
1 + ε

αγ

(
ki,i − kt,iS

(
STKtS + γI

)−1
STkt,i

)
, (3)

is an α-approximation of the RLS τt,i , that is τt,i(γ)/α ≤ τ̃t,i ≤ τt,i(γ).
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The problem of estimating RLS

Kt+1 t

t

k
T
t+1

kt+1

Subsampled columns It

kt+1 = K(xt+1,xt+1)

K̃t

Approximate sampling distribution pt+1

⇒ since pi,t+1 ∝ τi,t+1, approximate τi,t+1
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Estimating RLS

τ̃t,i =
1 + ε

αγ

(
ki,i − kt,iS

(
STKtS + γI

)−1
STkt,i

)
,

I τ̃t,i = eT
i K̃t(K̃t + γI)−1ei would fail

I Instead, approximate τt,i directly in H, and then reformulate using
kernel trick τ̃t,i = φT

i (ΦSST
ΦT + γI)−1φi

I τ̃t,i can be computed in O(|It|2) space and O(|It|3) time
independent from t

I τ̃t,i for i ∈ It can be computed using only samples contained in It .
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Estimating RLS incrementally

pt+1

Kt+1

pt−1 pt

Kt−1

Kt

At each time step t construct K̃t as if it was drawn from pt

⇒ update the sampling set It incrementally as pt changes
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Estimating RLS incrementally by rejection sampling

pt+1

Kt+1

p1,t+1

Accept wp

m calls to a multinomial pt+1
≈ calls to t + 1 binomials each with probability pi,t+1
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Distributed sequential sampling for adaptive kernel DL
Instead of sampling from multinomial consider the sampling process

qi,i ∼ B(p̃i,i , q)
qt,i ∼ B(p̃t,i/p̃t−1,i , qt−1,i)

Similar to importance sampling. If the p̃t,i were fixed in advance

P(zt,i,j = 1) = P(B(p̃t,i/p̃t−1,i) = 1)zt−1,i,j

= P(B(p̃t,i/p̃t−1,i) = 1)P(B(p̃t−1,i/p̃t−2,i) = 1)zt−2,i,j

=
p̃t,i

p̃t−1,i

p̃t−1,i
p̃t−2,i

· · · p̃i+1,i
p̃i,i

p̃i,i
1 = p̃t,i

I4I3 + x4I3I2 + x3I2I1 + x2I1x1

x2 x3 x4

Michal Valko: Distributed sequential sampling for adaptive DL SequeL, Inria - 23/39



Distributed sequential sampling for adaptive kernel DL
Instead of sampling from multinomial consider the sampling process

qi,i ∼ B(p̃i,i , q)
qt,i ∼ B(p̃t,i/p̃t−1,i , qt−1,i)

Similar to importance sampling. If the p̃t,i were fixed in advance

P(zt,i,j = 1) = P(B(p̃t,i/p̃t−1,i) = 1)zt−1,i,j

= P(B(p̃t,i/p̃t−1,i) = 1)P(B(p̃t−1,i/p̃t−2,i) = 1)zt−2,i,j

=
p̃t,i

p̃t−1,i

p̃t−1,i
p̃t−2,i

· · · p̃i+1,i
p̃i,i

p̃i,i
1 = p̃t,i

I4I3 + x4I3I2 + x3I2I1 + x2I1x1

x2 x3 x4

Michal Valko: Distributed sequential sampling for adaptive DL SequeL, Inria - 23/39



Distributed sequential sampling for adaptive kernel DL
Instead of sampling from multinomial consider the sampling process

qi,i ∼ B(p̃i,i , q)
qt,i ∼ B(p̃t,i/p̃t−1,i , qt−1,i)

Similar to importance sampling. If the p̃t,i were fixed in advance

P(zt,i,j = 1) = P(B(p̃t,i/p̃t−1,i) = 1)zt−1,i,j

= P(B(p̃t,i/p̃t−1,i) = 1)P(B(p̃t−1,i/p̃t−2,i) = 1)zt−2,i,j

=
p̃t,i

p̃t−1,i

p̃t−1,i
p̃t−2,i

· · · p̃i+1,i
p̃i,i

p̃i,i
1 = p̃t,i

I4I3 + x4I3I2 + x3I2I1 + x2I1x1

x2 x3 x4

Michal Valko: Distributed sequential sampling for adaptive DL SequeL, Inria - 23/39



SQUEAK

Dictionary It = {(j ,φj , qt,j , p̃t,j)}, weights wi =
qt,j

p̃t,j q

Input: D, regularization γ, q, ε, Output: In

1: Initialize I0 as empty, p̃1,0 = 1
2: for t = 1, . . . , n do
3: Receive new sample xt
4: Compute α-app. RLS {τ̃t,i : i ∈ It−1 ∪ {t}}, using It−1, x, and Eq. 3
5: Set p̃t,i = min

{
τ̃t,i, p̃t−1,i

}
6: Initialize It = ∅
7: for all j ∈ {1, . . . , t − 1} do
8: if qt−1,j 6= 0 then
9: qt,j ∼ B(p̃t,j/p̃t−1,j, qt−1,j)

10: Add (j,φj , qt,j , p̃t,j ) to It .
11: end if
12: end for
13: qt,t ∼ B(p̃t,t, q)
14: Add qt,t copies of (t,φt , qt,t , p̃t,t) to It

15: end for

Dict-UpdateShrink

Expand
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SQUEAK

Theorem
Let α = ( 1+ε

1−ε ) and γ > 1. For any 0 ≤ ε ≤ 1, and 0 ≤ δ ≤ 1, if we run
SQUEAK with q = O( α

ε2 log( n
δ )), then w.p. 1− δ, for all t ∈ [n]

(1) ‖Pt − P̃t‖2 ≤ ε.
(2) |It| =

∑
i qt,i ≤ O(qdeff(γ)t) ≤ O( αε2 deff(γ)n log( n

δ ))).
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SQUEAK

Theorem
Let α = ( 1+ε

1−ε ) and γ > 1. For any 0 ≤ ε ≤ 1, and 0 ≤ δ ≤ 1, if we run
SQUEAK with q = O( α

ε2 log( n
δ )), then w.p. 1− δ, for all t ∈ [n]

(1) ‖Pt − P̃t‖2 ≤ ε.
(2) |It| =

∑
i qt,i ≤ O(qdeff(γ)t) ≤ O( αε2 deff(γ)n log( n

δ ))).

I Accuracy and space/time guarantees
I Anytime risk guarantees
I In worst case, no space gain (stores full Kn)
I In worst case, no space overhead (stores full Kn)
I RLS estimator not incremental , not easy because of changing weights
I Unnormalized p̃t,i , no need for appr. deff(γ)t
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SQUEAK

Theorem
Let α = ( 1+ε

1−ε ) and γ > 1. For any 0 ≤ ε ≤ 1, and 0 ≤ δ ≤ 1, if we run
SQUEAK with q = O( α

ε2 log( n
δ )), then w.p. 1− δ, for all t ∈ [n]

(1) ‖Pt − P̃t‖2 ≤ ε.
(2) |It| =

∑
i qt,i ≤ O(qdeff(γ)t) ≤ O( αε2 deff(γ)n log( n

δ ))).

I Only need to compute τ̃t,i if i ∈ It , never recompute after dropping
Never construct the whole Kn

subquadratic runtime O(n3)⇒ O(n|In|3) ≤ Õ(ndeff(γ)
3
n)

I Store points directly in the dictionary
Õ(deff(γ)

2
n + deff(γ)nd) space constant in n

single pass over the dataset (streaming)
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Proof sketch

Need to bound

P
(
∃t ∈ {1, . . . , n} : ‖Pt − P̃t‖2 ≥ ε ∪ |It | ≥ 3qdeff(γ)t

)

After a union bound
n∑

t=1
P
(
‖Pt − P̃t‖2 ≥ ε

)

+
n∑

t=1
P
(
|It | ≥ 3qdeff(γ)t ∩

{
∀t ′ ∈ {1, . . . , t} : ‖Pt − P̃t‖2 ≤ ε

})
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Proof sketch

We start by bounding P
(
‖Pt − P̃t‖2 ≥ ε

)
. Let

zs,i,j = I
{

us,i,j ≤
p̃s,i

p̃s−1,i

}
zs−1,i,j , vi = (Kt + γI)−1K1/2

t et,i

with us,i,j ∼ U(0, 1). Then

Yt = Pt − P̃t =
1
q

t∑

i=1

q∑

j=1

(
1− zt,i,j

p̃t,i

)
vi vT

i

Cannot use concentrations for independent r.v. , because zt,i,j and zt,i′,j′

are both dependent on zt−1,i′′,j′′ through the estimates.
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Proof sketch

Build the martingale

X{s,i,j} =
(

zs−1,i,j
p̃s−1,i

− zt,i,j
p̃s,i

)
vi vT

i

We can use variants of Bernstein’s inequality for matrix martingales, we
need a bound on the range

‖X{s,i,j}‖ =
1
q

∣∣∣∣
(

zs−1,i,j
p̃s−1,i

− zs,i,j
p̃s,i

)∣∣∣∣ ‖vi vT
i ‖ ≤

1
q

1
p̃s,i
‖vi‖2

≤ 1
q

1
p̃s,i

vT
i vi =

1
q

1
p̃s,i

eT
i K1/2

t (Kt + γI)−1K1/2
t ei

=
1
q

1
p̃s,i

eT
i Ptei =

1
q
τt,i
p̃s,i
≤ α

q
τt,i
ps,i

=
α

q
τt,i
τs,i
≤ α

q := R,

RLS normalize our r.v.
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Proof sketch
Now bound the total variation

W =
∑

E
[
X2
{s,i,j}

∣∣∣ {Xr}{s,i,j}−1
r=0

]

=
1
q2

q∑

j=1

t∑

i=1

t∑

s=1

zs−1,i,j
p̃s−1,i

(
1

p̃s,i
− 1

p̃s−1,i

)
vi vT

i vi vT
i

Deterministically

‖W‖ =
∥∥∥∥∥

1
q2

q∑

j=1

t∑

i=1

t∑

s=1

zs−1,i,j
p̃s−1,i

(
1

p̃s,i
− 1

p̃s−1,i

)
vi vT

i vi vT
i

∥∥∥∥∥

≤
∥∥∥∥∥

1
q2

q∑

j=1

t∑

i=1

vT
i vi

p̃2
t,i

vi vT
i

∥∥∥∥∥ ≤
∥∥∥∥∥
α

q

t∑

i=1

1
p̃t,i

vi vT
i

∥∥∥∥∥

≤
∥∥∥∥∥
α2

q

t∑

i=1
I

∥∥∥∥∥ =
α2

q t

Deterministic bound on variance too large
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i vi

p̃2
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1
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∥∥∥∥∥
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∥∥∥∥∥

1
q2
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j=1

t∑

i=1

vT
i vi

p̃2
t,i

vi vT
i

∥∥∥∥∥ ≤
∥∥∥∥∥
α

q

t∑

i=1

1
p̃t,i

vi vT
i

∥∥∥∥∥

≤
∥∥∥∥∥
α2

q

t∑

i=1
I

∥∥∥∥∥ =
α2

q t Deterministic bound on variance too large
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Proof sketch

This looks too pessimistic . When 1
p̃s,i

is large, zs,i,j should be zero.
We should take advantage of that.

We can use a finer concentration, Freedman’s inequality, that treats W
itself as a random variable.

P
(
‖Yt‖ ≥ ε ∩ ‖W‖ ≤ σ2) ≤ t exp{− . . . }

Starting from an upper bound on W that is still a r.v.

W � 1
q2

q∑

j=1

t∑

i=1

t−1max
s=0

{
zs,i,j

p̃2
s,i

}
vi vT

i vi vT
i

This still has high variance: cannot simply apply martingale Bernstein
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is large, zs,i,j should be zero.
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Proof sketch

maxt−1
s=0

{
zs,i,j
p̃2

s,i

}
is still hard to analyze, since it is the

maximum of dependent variables

Moreover maxt−1
s=0

{
zs,i,j
p̃2

s,i

}
depends on maxt−1

s=0

{
zs,i′,j′

p̃2
s,i′

}

We will find another set of dominating r.v. 1/wi,j , indep. from each other
Then apply Bernstein for indep. r.v.

Random variable A stochastically dominates random variable B, if for all
values a the two equivalent conditions are verified

P(A ≥ a) ≥ P(B ≥ a)⇔ P(A ≤ a) ≤ P(B ≤ a).
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Proof sketch

Imagine the sequence p̃s,i was fixed in advance. I can compute exactly
the distribution of all zs,i,j .
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Proof sketch

Imagine the sequence p̃s,i was fixed in advance. I can compute exactly
the distribution of all zs,i,j .

1 1/̄pt,e α2 /pt,e

0
1
−
p
t,
e/̄
p
t,
e

1

P
(
max

{
1
p̄t,e

;
zt+1,e,j

p̄t+1,e

}
≤a|F{t,m,N})

P
(

1
wt,e,j

≤a|F{t,m,N})

zt,e,j=1
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1 1/̄pt,e α2 /pt,e

0
1
−
p
t,
e/̄
p
t,
e

1

P
(
max

{
1
p̄t,e

;
zt+1,e,j

p̄t+1,e

}
≤a|F{t,m,N})

P
(

1
wt,e,j

≤a|F{t,m,N})

zt,e,j=1

P
(

1
w0,i,j

≤ a
)

=





0 for a < 1
1− 1

a for 1 ≤ a < α/pt,i

1 for α/pt,i ≤ a
,
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Proof sketch

We can now unwind the proof

5 dominate maxt−1
s=0

{
zs,i,j
p̃2

s,i

}
with 1/wi,j

4 apply Bernstein inequality for indep. r.v. to bound P(‖W‖ ≥ σ2)

3 apply Freedman inequality to bound P(‖Y‖ ≥ ε ∩ ‖W‖ ≤ σ2)

2 apply another stochastic dominance argument to bound
P
(
|It | ≥ 3qdeff(γ)t ∩

{
∀t ′ ∈ {1, . . . , t} : ‖Pt − P̃t‖2 ≤ ε

})

1 union bound

0 Q.E.D.
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Distributed sequential sampling for adaptive kernel DL

SQUEAK is a strictly sequential algorithm

We just did a sequential analysis
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Distributed sequential sampling for adaptive kernel DL

SQUEAK is a strictly sequential algorithm

We just did a sequential analysis

I1,2,3,4

I1,2,3 + I4

I1,2,3

I1,2 + I3

I1,2

I1 + I2

I1

D1

I2

D2

I3

I3

D3

I4

I4

I4

D4

s = 4

s = 3

s = 2

s = 1
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Distributed sequential sampling for adaptive kernel DL
SQUEAK is a strictly sequential algorithm

DISQUEAK is the distributed equivalent

I{4,1}

I{3,1} + I{3,2}

I{3,1}

I{2,1} + I{2,2}

I{2,1}
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DISQUEAK
Input: Dataset D, regularization γ, q, ε, Output: ID
1: Partition D into disjoint sub-datasets Di
2: Run SQUEAK on each Di , build set S1 = {IDi }k

i=1
3: for h = 1, . . . , k − 1 do
4: if |Sh| > 1 then .Dict-Merge
5: Pick two dictionaries ID, ID′ from Sh
6: I = ID ∪ ID′

7: ID,D′ = Dict-Update(I) using Eq. (4)
8: Place ID,D′ back into Sh+1
9: else

10: Sh+1 = Sh
11: end if
12: end for
13: Return ID, the last dictionary in Sk

τ̃D∪D′,i =
1− 2ε
γ

(ki,i − kT
i S(STKS + γI)−1STki), (4)
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DISQUEAK

Theorem
Let α = ( 1+2ε

1−2ε ) and γ > 1. For any 0 ≤ ε ≤ 1, and 0 ≤ δ ≤ 1, if we run
DISQUEAK with q = O( α

ε2 log( n
δ )), then w.p. 1− δ,

for all nodes {h, l} in the merge tree

(1) ‖P{h,l} − P̃{h,l}‖2 ≤ ε.
(2) |I{h,l}| ≤ O(qdeff(γ){h,l}) ≤ O( αε2 deff(γ)n log( n

δ ))).

I Same accuracy as SQUEAK but much faster
I Space/accuracy guarantees for all nodes
I Much more space used, but spread across many machines
I Runtime depends on exact merge tree

Fully unbalanced tree: O(n|In|3), same as SQUEAK
Fully balanced tree: O(log(n)|In|3) time, O(n|In|3) work!
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Comparison

Time |In| Increm.
Exact n3 n -

Bach’13 ndmax
2
n

ε

dmax,n

ε
No

A&M’15 n(|In|)2
(
λmin + nγε
λmin − nγε

)
deffn +

Tr(Kn)

γε
No

Cal&al’16 λ2
max
γ2

n2deff
3
n

ε2
λmax

γ

deffn
ε2 Yes

SQUEAK ndeff
3
n

ε2
deffn
ε2 Yes

RLS-sampling ndeff
2
n

ε2
deffn
ε2 -

M&M’16 ndeff
3
n

ε2
deffn
ε2 No
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Conclusions

SQUEAK and DISQUEAK
First method (with guarantees) to break O(n) time barrier using
DISQUEAK, with M&M’16 first to break O(n2) barrier
Strong reconstruction guarantees, suitable for many downstream
kernel (and not) tasks

Final dictionary can be updated if new samples arrive
Novel analysis, potentially useful for general importance sampling

Future work
Experiments

Trivial to implement: 328 lines of python, single file, including
distributed task queue
Preliminary results promising, easily scales to 100k of samples

Beyond closed formulas: SQUEAK for gradient based methods
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