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Motivation Kernel Ridge Leverage Scores (RLS) Sampling
» Kernel methods are versatile and accurate
» Strong generalization guarantees but poor scalability H Definition 1. Given a kernel matriz K,, € R"*"™, define
O(n?®) time O(n?) space (n number of samples) _ ~-ridge leverage score Tni(7) = en i KNK, +71,) te,.;
eff. dim. des | < s T T —1
» Current limitation: Many approximate schemes are either not = ¢(xi) (9(Xp)d(Xn) +7I)7 o(xi) (1)
scalable or not accurate — 0 . . . n 4
0 effective dimension def(V)n = Z._l Tn,i(7) = Tr (K (K, +71,) ) (2)
= We propose a pearalet distributed incremental approxi- _ 0 =
mation scheme for kernel methods with complexity and error rerent
uarantees adaptive to the dataset and kernel structure ivelv: T+ Fivi e : .
5 P Proposition 1 (Alaoui, Mahoney, 2015). Let € be the accuracy, ¢ the gti”t”’f’y .Tz_f{ﬂ ien; 't_’wt%/lgf F}r{edlctlo;)oq point X;
= Runs in a single pass over the dataset, and can update its confidence. If the regularized Nystrom approzimation K, is computed| Ui = € (BnWn) = € Bn(Bn + 4L) "¥n .
solution if new data arrives using a sampling distribution proportional to Tnyz, and at least Pros: + m scales with the effective dimension
= On a single .machine, cor_rlputes a solution in subquadratic 2d o (7)m - ( o  computing Ty 3(s2) is as difficult as solving \
O(n) time, avoids constructlng the whole Kn m = 82 1Og (E) S the Origina| prob|em
= On multiple machines, computes a solution in logarithmic . . = - the probabilities need be recomputed at
_ < — < O _ . :
O(log(n)) time, without increase in total work columns, then with probability 1 =0, 0 = Kn =Kn = 1, 5 any new sample (=multipass) )

= Black-box applicability to many downstream tasks

SQUEAK

Nystrom Approximation

Lemma 1. Assume that the dictionary Z;,_1 induces a ~y-approx. IN{t_l, and| B Tp; = e;rIN{t(IA{t +WI)_1eZ- would fail

Subsampling It S, b L . N —1/2 . .
o _ ¢ be constructed by adding q copies of (q) e;+ to the selection matriz. . L .
1 Select a subset (dictionary) Z,, of mu representative samples Then, denoting o = (1 +¢)/(1 — &), for all i such that i € {T,_1 U {t}}, » Instead, apprOX|matej,Tz directly in RKHS
2 Constructs a sparse matrix S,, to select and reweight the columns Tri = O(x:)T(d(X4)SS d(Xe)T + 1) Lo(x;)
associated with the points in Z,, - 1+¢

(3)

. — 1 g and then reformulate using kernel trick
ki — keiS (S KS +91) STk |,

Tt —

ary » 7:,; can be computed in O(|Z¢|?) space and

. O(|Z:|?) time, independent from t.
is an a-approximation of the RLS T, ;, that is 7, ;(7v)/a < Tys < T1i(7). (IZ¢|) time, independent from

In=17,8,2,4} » 7:; for samples in Z; can be computed
using only samples contained in Z;.

Sampling dist. p

SQUEAK » The formulation of 73 ; is not incremental
| Input: D, regularization v,q, €, Output: Z,
Kn Sn KnSn 1: Initialize Zy as empty, p1o =1 Proposition 2. For any kernel matriz
2: fort =1,...,n do K;_1 and its bordering K,
3:  Receive new sample x;
n X n = 4:  Compute a-app. RLS {7 ; : ¢t € 7,1 U{t}}, using Z;_1, x, and Eq. 3 Tei < Te—14, deg(V)t = deg(y)i—1-
5. Set Pt,i = min {7t i, Pt—1.i}
6: Initialize Z; = ()
- — 7. forallje{l,....,t—1} do
3: if qt—1,; # (0 then
Low-Rank Approximation N Y de.j N.B (Pe./ pi_lﬂj’qt_l’j) SHRINK —
3 Compute approximate, low-rank matrix K,, = CW~IC' as 10: fl\d(:' (J: @5, 4t,5,Pr,5) to Iy. D1cT-UPDATE (o) (1o ) ("0 ) (o) (e
11: enal .
K, =CW'CT =K,S, (STK,S, + 7I,)  'STK, | e &, (&0
B e (pt’_t’ ) - } EXPAND @ @@
~1 14:  Add g ¢ copies of (¢, ®¢,Gt,t,Dt,e) to Iy @
15: end for @
= . = p— Theorem 1. Leta:(%—fi) and v > 1. Forany 0 <e <1, and0<9 <1, if —_—
W= = (SpKnSn +11m) ¢ =5nKn we run SQUEAK with § = O(% log(%)), then w.p. 1 -0, for allt € |n)]
(1) K, computed with T, is a ~v-approzimation of K;.
C = K,Sn (2) |Zel = >, Qri < O(@deg(7)e) < O(Zdegp(v)n log(F))-

N , | | | | |
Efficient Solution Accuracy and space/time anytime guarantees, matches exact RLS sampling. Ta Taz) Taa Taa Zas  h=1
4 Compute approximate solution \\ /

Kernel Ridge Regression Using unnormalized p; ;, no need for appr. deg(7): Tua) + Taa

_ ~ _ 1 —1 Only need to compute RLS for points in Z;, never recompute after dropping Ty ‘ Tas) Tag b=

_ 1, _ B T T t
w, = (K, +ul) 'y, = . (yn C(C'C+uW) C }’n) LsNever construct the whole K,,, subquadratic runtime <emitmtas — O (n|Z, |?) \ /
Store points directly in the dictionary |

Kernel K-M L hes

=rne =ans L O(dest ()2 + dei(7)nd) space constant in n

mgn Tr(K, — AATKnAAT) - mpin Tr(ﬁn _ AATINCRAAT) Single pass over the dataset (streaming)

Dictionary changes a lot between iteration, total runtime O(n|Z,|°) -

Kernel PCA

. - e Extend D1cT-UPDATE (point + dict.) to DicT-MERGE (dict. + dict.) e,
min K, —ZZ KnHF ~ min K, — ZZ KnHF L, Distributed SQUEAK, multiple workers in parallel, without sharing memory |
Recursive merging to build dictionary, O(log(n)|Z,|°) time, O(n|Z,|?) work . hes
Also Kernel CCA, Kernel [Your downstream problem here]
Scalability now depends on m Tn*ge Zn] Incr.
ExAcCT n n -
2 3
Space: @+ = O(nm), Time:&dy = O(nm? + m?) Bach'13 nd”;""x” + d’“;"” dmf‘;’” No
Problems: ALM'15 n(|Z,)? (;\m?njggg) deit(7)n | No
? How to choose the sampling distribution? 2 m2da()? d ()
? How to choose m? INK (C&al’'16) o - n Ar;ax <tV Yes
SQUEAK nden(y), der(1) Yes
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