Distributed Adaptive Sampling for Kernel Matrix Approximation

Daniele Calandriello, Alessandro Lazaric, Michal Valko

Motivation

- ► Kernel methods are *versatile* and *accurate*
- Strong generalization guarantees but *poor scalability*

 $\mathcal{O}(n^3)$ time $\mathcal{O}(n^2)$ space (*n* number of samples)

- **E** Current limitation: Many approximate schemes are either **not** scalable or not accurate
- \Rightarrow We propose a **parallel** distributed incremental approximation scheme for kernel methods with complexity and error guarantees adaptive to the dataset and kernel structure

 \Rightarrow Runs in a single pass over the dataset, and can update its solution if **new data** arrives

 \Rightarrow On a single machine, computes a solution in subquadratic $\mathcal{O}(\mathbf{n})$ time, avoids constructing the whole \mathbf{K}_n

 \Rightarrow On multiple machines, computes a solution in logarithmic $\mathcal{O}(\log(n))$ time, without increase in total work

Kernel Ridge Leverage Scores (RLS) Sampling

Definition 1. Given a kernel matrix $\mathbf{K}_n \in \mathbb{R}^{n \times n}$, define $\tau_{n,i}(\gamma) = \mathbf{e}_{n,i} \mathbf{K}_n^{\mathsf{T}} (\mathbf{K}_n + \gamma \mathbf{I}_n)^{-1} \mathbf{e}_{n,i}$ γ -ridge leverage score $= \phi(\mathbf{x}_i)^{\mathsf{T}} (\phi(\mathbf{X}_n)\phi(\mathbf{X}_n)^{\mathsf{T}} + \gamma \mathbf{I})^{-1} \phi(\mathbf{x}_i)$ (1) $d_{eff}(\gamma)_n = \sum_{i=1}^n \tau_{n,i}(\gamma) = \operatorname{Tr}\left(\mathbf{K}_n(\mathbf{K}_n + \gamma \mathbf{I}_n)^{-1}\right)$ (2)effective dimension

(3)

Proposition 1 (Alaoui, Mahoney, 2015). Let ε be the accuracy, δ the confidence. If the regularized Nystrom approximation \mathbf{K}_n is computed using a sampling distribution proportional to $\boldsymbol{\tau}_{n,i}$, and at least

$$m \geq \left(\frac{2\boldsymbol{d}_{eff}(\boldsymbol{\gamma})_{\boldsymbol{n}}}{\boldsymbol{\varepsilon}^{2}}\right) \log\left(\frac{n}{\delta}\right)$$

columns, then with probability $1 - \delta$, $\mathbf{0} \leq \mathbf{K}_n - \mathbf{K}_n \leq \frac{\gamma}{1 - \varepsilon} \mathbf{I}_n$.

Intuitively: $\tau_{n,i}$ sensitivity of prediction on point \mathbf{x}_i $\Rightarrow \widehat{y}_{n,i} = \mathbf{e}_i^\mathsf{T}(\mathbf{K}_n \widehat{\mathbf{w}}_n) = \mathbf{e}_i^\mathsf{T} \mathbf{K}_n (\mathbf{K}_n + \mu \mathbf{I})^{-1} \mathbf{y}_n$

Pros: + m scales with the effective dimension

- computing $\tau_{n,i}(\mu)$ is as difficult as solving Cons: the original problem - the probabilities need be **recomputed at** any new sample (=multipass)

 \Rightarrow Black-box applicability to many downstream tasks

Nyström Approximation

Subsampling

- 1 Select a subset (dictionary) \mathcal{I}_n of \boldsymbol{m} representative samples
- 2 Constructs a sparse matrix \mathbf{S}_n to select and reweight the columns associated with the points in \mathcal{I}_n

Low-Rank Approximation 3 Compute approximate, low-rank matrix $\mathbf{\tilde{K}}_n = \mathbf{C}\mathbf{W}^{-1}\mathbf{C}^{\mathsf{T}}$ as

SQUEAK

Lemma 1. Assume that the dictionary \mathcal{I}_{t-1} induces a γ -approx. \mathbf{K}_{t-1} , and let $\overline{\mathbf{S}}_t$ be constructed by adding \overline{q} copies of $(\overline{q})^{-1/2} \mathbf{e}_{t,t}$ to the selection matrix. Then, denoting $\alpha = (1 + \varepsilon)/(1 - \varepsilon)$, for all *i* such that $i \in \{\mathcal{I}_{t-1} \cup \{t\}\},\$

$$\widetilde{\tau}_{t,i} = \frac{1+\varepsilon}{\alpha\gamma} \left(k_{i,i} - \mathbf{k}_{t,i} \overline{\mathbf{S}} \left(\overline{\mathbf{S}}^{\mathsf{T}} \mathbf{K}_t \overline{\mathbf{S}} + \gamma \mathbf{I} \right)^{-1} \overline{\mathbf{S}}^{\mathsf{T}} \mathbf{k}_{t,i} \right),$$

is an α -approximation of the RLS $\tau_{t,i}$, that is $\tau_{t,i}(\gamma)/\alpha \leq \tilde{\tau}_{t,i} \leq \tau_{t,i}(\gamma)$.

SQUEAK

Input: \mathcal{D} , regularization γ, \overline{q} , ε , **Output**: \mathcal{I}_n

- 1: Initialize \mathcal{I}_0 as empty, $\widetilde{p}_{1,0} = 1$
- 2: for t = 1, ..., n do
- Receive new sample \mathbf{x}_t 3:
- Compute α -app. RLS $\{ \widetilde{\tau}_{t,i} : i \in \mathcal{I}_{t-1} \cup \{t\} \}$, using \mathcal{I}_{t-1} , x, and Eq. 3
- Set $\widetilde{\mathbf{p}}_{\mathbf{t},\mathbf{i}} = \min \{ \widetilde{\tau}_{\mathbf{t},\mathbf{i}}, \ \widetilde{\mathbf{p}}_{\mathbf{t}-\mathbf{1},\mathbf{i}} \}$ 5:
- Initialize $\mathcal{I}_t = \emptyset$ 6:
- for all $j \in \{1, ..., t-1\}$ do 7:
- if $q_{t-1,j} \neq 0$ then 8:
- $\mathbf{q_{t,j}} \sim \mathcal{B}(\mathbf{\widetilde{p}_{t,j}}/\mathbf{\widetilde{p}_{t-1,j}},\mathbf{q_{t-1,j}})$ 9: Add $(j, \phi_j, q_{t,j}, \widetilde{p}_{t,j})$ to \mathcal{I}_t . 10:
- end if 11:
- end for 12:

- ▶ Instead, approximate $\tau_{t,i}$ directly in RKHS $\widetilde{\tau}_{t,i} = \phi(\mathbf{x}_i)^{\mathsf{T}} (\phi(\mathbf{X}_t) \overline{\mathbf{SS}}^{\mathsf{T}} \phi(\mathbf{X}_t)^{\mathsf{T}} + \gamma \mathbf{I})^{-1} \phi(\mathbf{x}_i)$ and then reformulate using kernel trick
- $\succ \widetilde{\tau}_{t,i}$ can be computed in $\mathcal{O}(|\mathcal{I}_t|^2)$ space and $\mathcal{O}(|\mathcal{I}_t|^3)$ time, independent from t.
- \triangleright $\widetilde{\tau}_{t,i}$ for samples in \mathcal{I}_t can be computed using only samples contained in \mathcal{I}_t .
- \blacktriangleright The formulation of $\tilde{\tau}_{t,i}$ is not incremental

Proposition 2. For any kernel matrix \mathbf{K}_{t-1} and its bordering \mathbf{K}_t ,

 $\tau_{t,i} \leq \tau_{t-1,i}, \quad d_{eff}(\gamma)_t \geq d_{eff}(\gamma)_{t-1}.$

Efficient Solution

4 Compute approximate solution Kernel Ridge Regression

$$\widetilde{\mathbf{w}}_n = (\widetilde{\mathbf{K}}_n + \mu \mathbf{I})^{-1} \mathbf{y}_n = \frac{1}{\mu} \left(\mathbf{y}_n - \mathbf{C} \left(\mathbf{C}^\mathsf{T} \mathbf{C} + \mu \mathbf{W} \right)^{-1} \mathbf{C}^\mathsf{T} \mathbf{y}_n \right)$$

Kernel K-Means

 $\min_{\mathbf{A}} \operatorname{Tr}(\mathbf{K}_n - \mathbf{A}\mathbf{A}^{\mathsf{T}}\mathbf{K}_n\mathbf{A}\mathbf{A}^{\mathsf{T}}) \sim \min_{\mathbf{A}} \operatorname{Tr}(\widetilde{\mathbf{K}}_n - \mathbf{A}\mathbf{A}^{\mathsf{T}}\widetilde{\mathbf{K}}_n\mathbf{A}\mathbf{A}^{\mathsf{T}})$

Kernel PCA

$$\min_{\mathbf{Z}} \left\| \mathbf{K}_n - \mathbf{Z} \mathbf{Z}^\mathsf{T} \mathbf{K}_n \right\|_F \sim \min_{\mathbf{Z}} \left\| \widetilde{\mathbf{K}}_n - \mathbf{Z} \mathbf{Z}^\mathsf{T} \widetilde{\mathbf{K}}_n \right\|_F$$

Also Kernel CCA, Kernel [Your downstream problem here] *Scalability* now depends on *m*

15: **end for**

Theorem 1. Let $\alpha = (\frac{1+\varepsilon}{1-\varepsilon})$ and $\gamma > 1$. For any $0 \le \varepsilon \le 1$, and $0 \le \delta \le 1$, if we run SQUEAK with $\overline{q} = \mathcal{O}(\frac{\alpha}{\varepsilon^2} \log(\frac{n}{\delta}))$, then w.p. $1 - \delta$, for all $t \in [n]$

SHRINK

DICT-UPDATE

(1) \mathbf{K}_t computed with \mathcal{I}_t is a γ -approximation of \mathbf{K}_t . (2) $|\mathcal{I}_t| = \sum_i Q_{t,i} \leq \mathcal{O}(\overline{q}d_{eff}(\gamma)_t) \leq \mathcal{O}(\frac{\alpha}{\epsilon^2} d_{eff}(\gamma)_n \log(\frac{n}{\delta})).$

Accuracy and space/time anytime guarantees, matches exact RLS sampling.

Using unnormalized $\widetilde{p}_{t,i}$, no need for appr. $d_{\text{eff}}(\gamma)_t$

Only need to compute RLS for points in \mathcal{I}_t , never recompute after dropping \rightarrow Never construct the whole \mathbf{K}_n , subquadratic runtime $\frac{\mathcal{O}(n^2 |\mathcal{I}_n|^2)}{\mathcal{O}(n |\mathcal{I}_n|^3)} \Rightarrow \mathcal{O}(n |\mathcal{I}_n|^3)$

Store points directly in the dictionary $\downarrow \mathcal{O}(d_{\text{eff}}(\gamma)_n^2 + d_{\text{eff}}(\gamma)_n d)$ space constant in nSingle pass over the dataset (streaming)

Dictionary changes a lot between iteration, total runtime $O(n|\mathcal{I}_n|^3)$

Extend DICT-UPDATE (point + dict.) to DICT-MERGE (dict. + dict.) → Distributed SQUEAK, multiple workers in parallel, without sharing memory Recursive merging to build dictionary, $\mathcal{O}(\log(n)|\mathcal{I}_n|^3)$ time, $\mathcal{O}(n|\mathcal{I}_n|^3)$ work

	Time	$ \mathcal{I}_n $	Incr.
EXACT	n^3	$\sim n$	_

? How to choose m?

References

- [Alaoui and Mahoney (2015)] A. El Alaoui and M. W. Mahoney. Fast randomized kernel methods with statistical guarantees. In NIPS, 2015.
- [Bach (2013)] F. Bach. Sharp analysis of low-rank kernel matrix approximations. In COLT, 2013.
- [Calandriello et al. (2016)] D. Calandriello, A. Lazaric, and M. Valko. Analysis of Nyström method with sequential ridge leverage scores. In UAI, 2016.
- [Rudi et al. (2015)] A. Rudi, R. Camoriano, and L. Rosasco. Less is more: Nyström computational regularization. In NIPS, 2015.
- [Musco and Musco (2016)] C. Musco and C. Musco. Provably useful kernel matrix approximation in linear time. In arXiv, 2016.

LARGI
$$n$$
 n n Bach'13 $\frac{nd_{\max}n}{\varepsilon}^2 + \frac{d_{\max}n}{\varepsilon}$ $\frac{d_{\max,n}}{\varepsilon}$ NoA&M'15 $n(|\mathcal{I}_n|)^2$ $\left(\frac{\lambda_{\min}+n\mu\varepsilon}{\lambda_{\min}-n\mu\varepsilon}\right)d_{eff}(\gamma)n$ NoINK (C&al'16) $\frac{\lambda_{\max}^2}{\gamma^2}\frac{n^2d_{eff}(\gamma)n}{\varepsilon^2}$ $\frac{\lambda_{\max}}{\gamma}\frac{d_{eff}(\gamma)n}{\varepsilon^2}$ YesSQUEAK $\frac{n^2d_{eff}(\gamma)n}{\varepsilon^2}$ $\frac{d_{eff}(\gamma)n}{\varepsilon^2}$ Yes

Downstream guarantees (Musco & Musco 2016)

RLS sampling preserves well the projection on \mathbf{K}_n 's range $\mathbf{P} = \mathbf{K}_n^{1/2} (\mathbf{K}_n + \gamma \mathbf{I})^{-1} \mathbf{K}_n^{1/2} = \phi(\mathbf{X}_n)^{\mathsf{T}} (\phi(\mathbf{X}_n)\phi(\mathbf{X}_n)^{\mathsf{T}} + \gamma \mathbf{I})^{-1} \phi(\mathbf{X}_n)$

Kernel ridge regression: Kernel PCA: $\widehat{y}_{n,i} = \mathbf{e}_i^{\mathsf{T}} \mathbf{K}_n (\mathbf{K}_n + \mu \mathbf{I})^{-1} \mathbf{y}_n = \mathbf{e}_i^{\mathsf{T}} \mathbf{P} \mathbf{y}_n \qquad \mathbf{K}_n = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathsf{T}}, \ \mathbf{P} = \mathbf{U} \mathbf{\Lambda} (\mathbf{\Lambda} + \gamma \mathbf{I})^{-1} \mathbf{U}^{\mathsf{T}} \\ \widetilde{w}_n = (\widetilde{\mathbf{K}}_n + \gamma \mathbf{I})^{-1} \mathbf{y}_n \qquad \widetilde{\mathbf{Z}} \text{ computed using } \widetilde{\mathbf{K}}_n = \widetilde{\mathbf{U}} \widetilde{\mathbf{\Lambda}} \widetilde{\mathbf{U}}^{\mathsf{T}}$ $R(\widetilde{w}_n) \leq \left(1 + \frac{1}{1 - \varepsilon}\right) R(\widehat{w}_n) \qquad \left\|\mathbf{K}_n - \widetilde{\mathbf{Z}}\widetilde{\mathbf{Z}}^\mathsf{T}\mathbf{K}_n\right\|_F \leq (1 + 2\varepsilon) \left\|\mathbf{K}_n - \mathbf{Z}^*\mathbf{Z}^{*\mathsf{T}}\mathbf{K}_n\right\|_{F} \qquad \left\|\mathbf{K}_n - \widetilde{\mathbf{A}}\widetilde{\mathbf{A}}^\mathsf{T}\mathbf{K}_n\widetilde{\mathbf{A}}\widetilde{\mathbf{A}}^\mathsf{T}\right\|_{F}$

Kernel K-Means: A ρ -optimal cluster assignment for \mathbf{K}_n \mathbf{A}^* optimal cluster assignment for \mathbf{K}_n $\leq \xi \operatorname{Tr}(\mathbf{K}_n - \mathbf{A}^* {\mathbf{A}^*}^\mathsf{T} \mathbf{K}_n {\mathbf{A}^*}^\mathsf{T})$