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Motivation
I Kernel methods are versatile and accurate
I Strong generalization guarantees but poor scalability

O(n3) time O(n2) space (n number of samples)

I Current limitation: Many approximate schemes are either not
scalable or not accurate

⇒ We propose a parallel distributed incremental approxi-
mation scheme for kernel methods with complexity and error
guarantees adaptive to the dataset and kernel structure

⇒ Runs in a single pass over the dataset, and can update its
solution if new data arrives

⇒ On a single machine, computes a solution in subquadratic
O(n) time, avoids constructing the whole Kn

⇒ On multiple machines, computes a solution in logarithmic
O(log(n)) time, without increase in total work

⇒ Black-box applicability to many downstream tasks

Nyström Approximation
Subsampling
1 Select a subset (dictionary) In of m representative samples
2 Constructs a sparse matrix Sn to select and reweight the columns

associated with the points in In
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Low-Rank Approximation
3 Compute approximate, low-rank matrix K̃n = CW−1CT as

K̃n = CW−1CT = KnSn
(
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)−1ST
nKn
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C = KnSn

CT = STnKnW−1 = (STnKnSn + γIm)−1

Efficient Solution
4 Compute approximate solution

Kernel Ridge Regression

w̃n = (K̃n + µI)−1yn = 1
µ
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Kernel K-Means
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Also Kernel CCA, Kernel [Your downstream problem here]

Scalability now depends on m

Space:O(n2) ⇒ O(nm), Time:O(n3) ⇒ O(nm2 +m3)

Problems:
? How to choose the sampling distribution?
? How to choose m?

Kernel Ridge Leverage Scores (RLS) Sampling
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Definition 1. Given a kernel matrix Kn ∈ Rn×n, define

γ-ridge leverage score τn,i(γ) = en,iKT
n(Kn + γIn)−1en,i

= φ(xi)T(φ(Xn)φ(Xn)T + γI)−1φ(xi) (1)

effective dimension deff(γ)n =
∑n

i=1
τn,i(γ) = Tr

(
Kn(Kn + γIn)−1) (2)

Proposition 1 (Alaoui, Mahoney, 2015). Let ε be the accuracy, δ the
confidence. If the regularized Nystrom approximation K̃n is computed
using a sampling distribution proportional to τn,i, and at least

m ≥
(

2deff(γ)n
ε2

)
log
(n
δ

)
columns, then with probability 1− δ, 0 � Kn − K̃n � γ

1−εIn.

Intuitively: τn,i sensitivity of prediction on point xi
⇒ ŷn,i = eT

i (Knŵn) = eT
i Kn(Kn + µI)−1yn

Pros: + m scales with the effective dimension

Cons: - computing τn,i(µ) is as difficult as solving
the original problem
- the probabilities need be recomputed at
any new sample (=multipass)

SQUEAK

Lemma 1. Assume that the dictionary It−1 induces a γ-approx. K̃t−1, and
let St be constructed by adding q copies of (q)−1/2et,t to the selection matrix.
Then, denoting α = (1 + ε)/(1− ε), for all i such that i ∈ {It−1 ∪ {t}},

τ̃t,i =1 + ε

αγ

(
ki,i − kt,iS

(
STKtS + γI

)−1
STkt,i

)
, (3)

is an α-approximation of the RLS τt,i, that is τt,i(γ)/α ≤ τ̃t,i ≤ τt,i(γ).

SQUEAK
Input: D, regularization γ, q, ε, Output: In
1: Initialize I0 as empty, p̃1,0 = 1
2: for t = 1, . . . , n do
3: Receive new sample xt
4: Compute α-app. RLS {τ̃t,i : i ∈ It−1 ∪ {t}}, using It−1, x, and Eq. 3
5: Set p̃t,i = min {τ̃t,i, p̃t−1,i}
6: Initialize It = ∅
7: for all j ∈ {1, . . . , t− 1} do
8: if qt−1,j 6= 0 then
9: qt,j ∼ B(p̃t,j/p̃t−1,j,qt−1,j)
10: Add (j, φj , qt,j , p̃t,j) to It.
11: end if
12: end for
13: qt,t ∼ B(p̃t,t,q)
14: Add qt,t copies of (t, φt, qt,t, p̃t,t) to It
15: end for

Dict-UpdateShrink

Expand

Theorem 1. Let α = ( 1+ε
1−ε ) and γ > 1. For any 0 ≤ ε ≤ 1, and 0 ≤ δ ≤ 1, if

we run SQUEAK with q = O( αε2 log(nδ )), then w.p. 1− δ, for all t ∈ [n]

(1) K̃t computed with It is a γ-approximation of Kt.
(2) |It| =

∑
iQt,i ≤ O(qdeff(γ)t) ≤ O( αε2 deff(γ)n log(n

δ
)).

Accuracy and space/time anytime guarantees, matches exact RLS sampling.

Using unnormalized p̃t,i, no need for appr. deff(γ)t

Only need to compute RLS for points in It, never recompute after dropping
Never construct the whole Kn, subquadratic runtime O(n2|In|2) ⇒ O(n|In|3)

Store points directly in the dictionary
O(deff(γ)2

n + deff(γ)nd) space constant in n
Single pass over the dataset (streaming)

Dictionary changes a lot between iteration, total runtime O(n|In|3)

Extend Dict-Update (point + dict.) to Dict-Merge (dict. + dict.)
Distributed SQUEAK, multiple workers in parallel, without sharing memory
Recursive merging to build dictionary, O(log(n)|In|3) time, O(n|In|3) work

I τ̃t,i = eT
i K̃t(K̃t + γI)−1ei would fail

I Instead, approximate τt,i directly in RKHS
τ̃t,i = φ(xi)T(φ(Xt)SST

φ(Xt)T + γI)−1φ(xi)
and then reformulate using kernel trick

I τ̃t,i can be computed in O(|It|2) space and
O(|It|3) time, independent from t.

I τ̃t,i for samples in It can be computed
using only samples contained in It.

I The formulation of τ̃t,i is not incremental

Proposition 2. For any kernel matrix
Kt−1 and its bordering Kt,

τt,i ≤ τt−1,i, deff(γ)t ≥ deff(γ)t−1·
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Downstream guarantees (Musco & Musco 2016)

RLS sampling preserves well the projection on Kn’s range P = K1/2
n (Kn + γI)−1K1/2

n = φ(Xn)T(φ(Xn)φ(Xn)T + γI)−1φ(Xn)

Kernel ridge regression:
ŷn,i = eT

i Kn(Kn + µI)−1yn = eT
i Pyn

w̃n = (K̃n + γI)−1yn

R(w̃n) ≤
(

1 + 1
1− ε

)
R(ŵn)

Kernel PCA:
Kn = UΛUT, P = UΛ(Λ + γI)−1UT

Z̃ computed using K̃n = ŨΛ̃ŨT

∥∥Kn − Z̃Z̃TKn

∥∥
F
≤ (1 + 2ε)

∥∥∥Kn − Z∗Z∗TKn

∥∥∥
F

Kernel K-Means:
Ã ρ-optimal cluster assignment for K̃n

A∗ optimal cluster assignment for Kn

ξ = (1 + ε)(1 + ρ)
Tr(Kn − ÃÃTKnÃÃT)

≤ ξ Tr(Kn − A∗A∗TKnA∗A∗T)

References
[Alaoui and Mahoney (2015)] A. El Alaoui and M. W. Mahoney. Fast ran-

domized kernel methods with statistical guarantees. In NIPS, 2015.
[Bach (2013)] F. Bach. Sharp analysis of low-rank kernel matrix approxi-

mations. In COLT, 2013.
[Calandriello et al. (2016)] D. Calandriello, A. Lazaric, and M. Valko.

Analysis of Nyström method with sequential ridge leverage scores.
In UAI, 2016.

[Rudi et al. (2015)] A. Rudi, R. Camoriano, and L. Rosasco. Less is more:
Nyström computational regularization. In NIPS, 2015.

[Musco and Musco (2016)] C. Musco and C. Musco. Provably useful ker-
nel matrix approximation in linear time. In arXiv, 2016.


