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Motivation

» Kernel regression is versatile and accurate
» Strong accuracy guarantees but poor scalability

O(n?®) time O(n?) space (n number of samples)

» Current limitation: Many approximate schemes are either not
scalable or not accurate

= We propose an incremental approximation scheme for kernel
regression with complexity and error guarantees depending on
the kernel structure

Kernel Ridge Regression (KRR)

The setting (fixed-design)
» Dataset D = {x¢, y: }7q

— arbitrary x; € X
— Yy = fr(xe) + 1
» Kernel function L : A x X —- R

» Kernel matrix K; € R with [Ky]; ; = K(x;,%;),%,7 <t

Kernel regression

» Objective (after ¢ samples)

W, = argmin [y, — Kywl? + w2
W

» Closed-form solution

w; = (K; + pI) "y,
» On-sample risk

R(wWy) = E, [|If; — Kyw,||?]

Nystrom Approximation

Subsampling
1 Select a subset (dictionary) Z,, of m representative samples
2 Constructs a sparse matrix S,, to select and reweight the columns

associated with the points in Z,,

L, =17,8,24
Samphng d|St P n { ) Oy &y }

Low-Rank Approximation N
3 Compute approximate, low-rank matrix K,, = CW—ICT as

~

K, =CW 'C" =K,S,(STK,S, + 71..)  SIK,

—1

Wl = (S KpSpy +1m) ! cl=s'k,

Efficient Solution
4 Compute approximate solution

1

- ~ . 1
w, = (K + ul) 1yn: ;

(yn —C(CTC+uW)~ CTyn)

Scalability now depends on m

Space: @+ = O(nm), Time:&dy = O(nm? + m?)

Problems:
? How to choose the sampling distribution?
? How to choose m?
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Kernel Ridge Leverage Scores (RLS) Sampling for KRR
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Definition 1. Given a kernel matriz K,, € R™"*"™, define

Tni(7) = en,i Kp (K +91,)  en,;

deﬁ(v)n — Zj:l Tn,i(’Y) = 1Ir (Kn(Kn + ’VIn)_l)

= ¢(x:) (0(Xn)d(Xy) " + 1) p(x;)

o Tn,i ()
Pnli = P > i1 g ()

Tn,i

~ deg(V)n

Proposition 1 (Alaoui, Mahoney, 2015). Let € be the accuracy, 6 the

confidence. If the reqularized Nystrom approximation K,, is computed
using the sampling distribution {p; .}, and at least

. <2de]zg7)n) log (%)

columns, then with probability 1 — o

SQUEAK

Intuitively: T, ; sensitivity of prediction on point x;
— /y\n,i — eT(ann) — e;rKn(Kn + ,LLI)_l}’n

)

( )

Pros: -+ m scales with the effective dimension
-+ the risk for w,, is almost the same as
for the exact solution

- computing 7, ; () is as difficult as solving
the original problem

- the probabilities need be recomputed at
any new sample (=multipass)

Cons:

let S; be constructed by adding G copies of (g)—l/2

Then, denoting a = (1 +¢)/(1 —¢€), for all © such that i € {Z; 1 U{t}},

~ 1 _ _ — 1 g
Tt,z’ — te (k‘z,@ — kt,iS (STKtS —+ "}/I) STkt,i> y
ary

is an a-approximation of the RLS 1, that is 7 ;(7v)/a < Tys < 11i(7).

Lemma 1. Assume that the dictionary Z;,_1 induces a ~y-approx. Kt_l, and
et + to the selection matriz.

> T = ezﬁt(ﬁt +~I)~te; would fail
» Instead, approximate 7;; directly in RKHS

~ —T -
Tei = ¢(xi) (#(Xe)SS ¢(Xe)" +~I) " o(x:)
and then reformulate using kernel trick

(4)| » 7;; can be computed in O(|Z;|?) space and

O(|Z¢|?) time, independent from .

» 7,; for samples in Z; can be computed
using only samples contained in Z;.

SQUEAK
Input: Dataset D, regularization v, i, q
Output: K, W,

1: Initialize Zp as empty, p1o =1

2: fort=1,...,ndo

16: Compute ﬁt using Z;, and w; using ﬁt, Yyt
17: end for

3:  Receive new column [k, k]
4 Compute a-app. RLS {71; :7 € Z;—1 U {t}}, using Z; 1, [Et,k:t], and Eq. 4
5: Set 5t,z’ = max {min {;t,ia ﬁt—l,i} ’ ﬁt—l,i/z}
6: Initialize Z; = ()
7. forallje{l,....,t—1} do
3: Qt—l,j — |{@:J :iEIt—lH
9: if Q:—1,; # 0 then
0 Qej ~ B(pt’.j/pt_lij’ Qt_j’j) SHRINK D1cT-UPDATE
11: Add Q; ; copies of (j,k¢ j,pt.;) to Z;.
12: end if
13:  end for
14: ~ Dt 1.0
Q1. B(Pt,_ta q) N } EXPAND
15:  Add Q. copies of (t, ks ¢, pit) to Zy

» « trades off accuracy and space/time cost

» The formulation of 7;; is not incremental

Proposition 2. For any kernel matrix
K;_1 and its bordering K,

Tei < Te—1s deg(V)t = deg(V)i-1-

l—e
we run SQUEAK with ¢ = O(% log(%)), then w.p. 1 -0, for allt € |n)]

(1) K, computed with T, is a ~v-approvimation of K.
(2) |Ze| = >_; Qri < O(qdep(7)e) < O(Sdeg(V)n log(F)).

Theorem 1. Let a = (1+5) and v > 1. Forany 0 <e <1, and0<9 <1, if

" Pros: b

+ Accuracy and space/time guarantees
+ Unnormalized p; ;, no need for appr. deg(7v):
+ In worst case, only log(n) space overhead

+ Anytime risk guarantees

(3) The solution wy satisfies R(w;) < (1 + %1;)72(@}). \ )
Ti S Acc. | | Cons:
Ime ace CC. I0SS nc.
3 pg - The time bottleneck is computing interme-
Exact 5 " ! / diate KRR solutions: O(¢T;2)
iate solutions: .
Bach'13 ”dmaX?dmaXS —”df;ax (1+4e) | No - ‘
A&M'15 n(space)? (im?n—l—n,ue) nde + Tr(K,) (1+2¢)2 | No - Still potentially cons’Fructs the whole matr!x
s 5 o min TTVHE He to compute KRR, single pass over matrix
INK (C&al'16) . ngdeﬁ ’m?ﬁ (142¢)? | Yes but not dataset.
SQUEAK % Lo (14+2¢)% | Yes | /

Beyond sequential KRR

What if we run SQUEAK simply to approximate K,,?

» Only need to compute RLS for points in Z;, never recompute after dropping

Ls Never construct the whole K,,, subquadratic runtime E-vidpetdas = O (12|Z,,|°)

» Store points directly in the dictionary

L O(det(v)2 + desi(7)nd) space constant in n, single pass over the dataset (streaming)
» Extend DicT-UPDATE (add point to dictionary) to DicT-MERGE (add dictionary to dictionary)

L, Distributed SQUEAK, multiple nodes operate in parallel, without sharing memory
recursively merge result to build final dictionary, O(log(n)|Z,|?) time, O(n|Z,|°) work

» RLS sampling preserves well the projection on K,,’s range

P =K/*(K, +7I)'KY? = ¢(X,,) T (¢(Xn) (X)) + 1)~

L, SQUEAK provides strong guarantees for many Kernel problems (random /fixed design

KRR, Kernel PCA, Kernel k-means)

|
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