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Motivation
I Kernel regression is versatile and accurate
I Strong accuracy guarantees but poor scalability

O(n3) time O(n2) space (n number of samples)

I Current limitation: Many approximate schemes are either not
scalable or not accurate

⇒We propose an incremental approximation scheme for kernel
regression with complexity and error guarantees depending on
the kernel structure

Kernel Ridge Regression (KRR)
The setting (fixed-design)

I Dataset D = {xt, yt}nt=1

– arbitrary xt ∈ X
– yt = f∗(xt) + ηt

I Kernel function K : X × X → R

I Kernel matrix Kt ∈ Rt×t, with [Kt]i,j = K(xi,xj), i, j ≤ t

Kernel regression
I Objective (after t samples)

ŵt = arg min
w

‖yt −Ktw‖2 + µ‖w‖2.

I Closed-form solution
ŵt = (Kt + µI)−1yt

I On-sample risk

R(ŵt) = Eη
[
‖f∗
t −Ktŵt‖2]

Nyström Approximation
Subsampling
1 Select a subset (dictionary) In of m representative samples
2 Constructs a sparse matrix Sn to select and reweight the columns

associated with the points in In

In = {7, 8, 2, 4}
p4

p5

p7
p8

p2

Kn

×

Sn

n

n m

n

p3

p1

KnSn

pSampling dist. p6

Low-Rank Approximation
3 Compute approximate, low-rank matrix K̃n = CW−1CT as

K̃n = CW−1CT = KnSn
(
ST
nKnSn + γIm

)−1ST
nKn

+

−1

C = KnSn

CT = STnKnW−1 = (STnKnSn + γIm)−1

Efficient Solution
4 Compute approximate solution

w̃n = (K̃n + µI)−1yn = 1
µ

(
yn −C

(
CTC + µW

)−1 CTyn
)

Scalability now depends on m

Space:O(n2) ⇒ O(nm), Time:O(n3) ⇒ O(nm2 +m3)

Problems:
? How to choose the sampling distribution?
? How to choose m?

Kernel Ridge Leverage Scores (RLS) Sampling for KRR
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Definition 1. Given a kernel matrix Kn ∈ Rn×n, define

γ-ridge leverage score τn,i(γ) = en,iKT
n(Kn + γIn)−1en,i

= φ(xi)T(φ(Xn)φ(Xn)T + γI)−1φ(xi) (1)

effective dimension deff(γ)n =
∑n

i=1
τn,i(γ) = Tr

(
Kn(Kn + γIn)−1) (2)

sampling distribution [pn]i = pn,i = τn,i(γ)∑n
j=1 τn,j(γ)

= τn,i
deff(γ)n

(3)

Proposition 1 (Alaoui, Mahoney, 2015). Let ε be the accuracy, δ the
confidence. If the regularized Nystrom approximation K̃n is computed
using the sampling distribution {pi,t}, and at least

m ≥
(

2deff(γ)n
ε2

)
log
(n
δ

)
columns, then with probability 1− δ

0 � Kn − K̃n �
γ

1− εIn, R(w̃n) ≤
(

1 + γ

µ

1
1− ε

)2
R(ŵn)

Intuitively: τn,i sensitivity of prediction on point xi
⇒ ŷn,i = eT

i (Knŵn) = eT
i Kn(Kn + µI)−1yn

Pros: + m scales with the effective dimension
+ the risk for w̃n is almost the same as
for the exact solution

Cons: - computing τn,i(µ) is as difficult as solving
the original problem
- the probabilities need be recomputed at
any new sample (=multipass)

SQUEAK

Lemma 1. Assume that the dictionary It−1 induces a γ-approx. K̃t−1, and
let St be constructed by adding q copies of (q)−1/2et,t to the selection matrix.
Then, denoting α = (1 + ε)/(1− ε), for all i such that i ∈ {It−1 ∪ {t}},

τ̃t,i =1 + ε

αγ

(
ki,i − kt,iS

(
STKtS + γI

)−1
STkt,i

)
, (4)

is an α-approximation of the RLS τt,i, that is τt,i(γ)/α ≤ τ̃t,i ≤ τt,i(γ).

SQUEAK
Input: Dataset D, regularization γ, µ, q
Output: K̃n, w̃n

1: Initialize I0 as empty, p̃1,0 = 1
2: for t = 1, . . . , n do
3: Receive new column [kt, kt]
4: Compute α-app. RLS {τ̃t,i : i ∈ It−1 ∪ {t}}, using It−1, [kt, kt], and Eq. 4
5: Set p̃t,i = max {min {τ̃t,i, p̃t−1,i} , p̃t−1,i/2}
6: Initialize It = ∅
7: for all j ∈ {1, . . . , t− 1} do
8: Qt−1,j = |{i = j : i ∈ It−1}|
9: if Qt−1,j 6= 0 then

10: Qt,j ∼ B(p̃t,j/p̃t−1,j , Qt−1,j)
11: Add Qt,j copies of (j,kt,j , p̃t,j) to It.
12: end if
13: end for
14: Qt,t ∼ B(p̃t,t, q)
15: Add Qt,t copies of (t,kt,t, p̃t,t) to It

16: Compute K̃t using It, and w̃t using K̃t, yt

17: end for
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Theorem 1. Let α = ( 1+ε
1−ε ) and γ > 1. For any 0 ≤ ε ≤ 1, and 0 ≤ δ ≤ 1, if

we run SQUEAK with q = O( αε2 log(nδ )), then w.p. 1− δ, for all t ∈ [n]

(1) K̃t computed with It is a γ-approximation of Kt.
(2) |It| =

∑
iQt,i ≤ O(qdeff(γ)t) ≤ O( αε2 deff(γ)n log(n

δ
)).

(3) The solution w̃t satisfies R(w̃t) ≤ (1 + γ
µ

1
1−ε )R(ŵt).
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I τ̃t,i = eT
i K̃t(K̃t + γI)−1ei would fail

I Instead, approximate τt,i directly in RKHS
τ̃t,i = φ(xi)T(φ(Xt)SST

φ(Xt)T + γI)−1φ(xi)
and then reformulate using kernel trick

I τ̃t,i can be computed in O(|It|2) space and
O(|It|3) time, independent from t.

I τ̃t,i for samples in It can be computed
using only samples contained in It.

I α trades off accuracy and space/time cost
I The formulation of τ̃t,i is not incremental

Proposition 2. For any kernel matrix
Kt−1 and its bordering Kt,

τt,i ≤ τt−1,i, deff(γ)t ≥ deff(γ)t−1·

Pros:
+ Accuracy and space/time guarantees
+ Unnormalized p̃t,i, no need for appr. deff(γ)t
+ In worst case, only log(n) space overhead
+ Anytime risk guarantees

Cons:
- The time bottleneck is computing interme-
diate KRR solutions: O(t|It|2).

- Still potentially constructs the whole matrix
to compute KRR, single pass over matrix
but not dataset.

Beyond sequential KRR
What if we run SQUEAK simply to approximate Kn?

I Only need to compute RLS for points in It, never recompute after dropping

Never construct the whole Kn, subquadratic runtime O(n2|In|2) ⇒ O(n|In|3)

I Store points directly in the dictionary

O(deff(γ)2
n + deff(γ)nd) space constant in n, single pass over the dataset (streaming)

I Extend Dict-Update (add point to dictionary) to Dict-Merge (add dictionary to dictionary)

Distributed SQUEAK, multiple nodes operate in parallel, without sharing memory
recursively merge result to build final dictionary, O(log(n)|In|3) time, O(n|In|3) work

I RLS sampling preserves well the projection on Kn’s range
P = K1/2

n (Kn + γI)−1K1/2
n = φ(Xn)T(φ(Xn)φ(Xn)T + γI)−1φ(Xn)

SQUEAK provides strong guarantees for many Kernel problems (random/fixed design
KRR, Kernel PCA, Kernel k-means)
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