Pack only the essentials: Adaptive dictionary learning for kernel ridge regression

Daniele Calandriello, Alessandro Lazaric, Michal Valko

Motivation

- Kernel regression is versatile and accurate
- Strong accuracy guarantees but poor scalability

$\mathcal{O}\left(n^{3}\right)$ time $\mathcal{O}\left(n^{2}\right)$ space (n number of samples)

- Current limitation: Many approximate schemes are either not scalable or not accurate
\Rightarrow We propose an incremental approximation scheme for kernel regression with complexity and error guarantees depending on the kernel structure

Kernel Ridge Regression (KRR)

The setting (fixed-design)

- Dataset $\mathcal{D}=\left\{\mathbf{x}_{t}, y_{t}\right\}_{t=1}^{n}$
arbitrary $\mathrm{x}_{t} \in \mathcal{X}$
$y_{t}=f^{*}\left(\mathbf{x}_{t}\right)+\eta_{t}$
- Kernel function $\mathcal{K}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$
- Kernel matrix $\mathbf{K}_{t} \in \mathbb{R}^{t \times t}$, with $\left[\mathbf{K}_{t}\right]_{i, j}=\mathcal{K}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right), i, j \leq t$

Kernel regression

- Objective (after t samples)

$$
\widehat{\mathbf{w}}_{t}=\underset{\mathbf{w}}{\arg \min }\left\|\mathbf{y}_{t}-\mathbf{K}_{t} \mathbf{w}\right\|^{2}+\boldsymbol{\mu}\|\mathbf{w}\|^{2} .
$$

- Closed-form solution
- On-sample risk

$$
\mathcal{R}\left(\widehat{\mathbf{w}}_{t}\right)=\mathbb{E}_{\eta}\left[\| \| \mathbf{f}_{t}^{*}-\mathbf{K}_{t} \widehat{\mathbf{w}}_{t} \|^{2}\right]
$$

Nyström Approximation

Subsampling

1 Select a subset (dictionary) \mathcal{I}_{n} of \boldsymbol{m} representative samples 2 Constructs a sparse matrix \mathbf{S}_{n} to select and reweight the columns associated with the points in \mathcal{I}_{n}

Low-Rank Approximation
3 Compute approximate, low-rank matrix $\widetilde{\mathbf{K}}_{n}=\mathbf{C W}^{-1} \mathbf{C}^{\top}$ as $\widetilde{\mathbf{K}}_{n}=\mathbf{C W}^{-1} \mathbf{C}^{\boldsymbol{\top}}=\mathbf{K}_{n} \mathbf{S}_{n}\left(\mathbf{S}_{n}^{\top} \mathbf{K}_{n} \mathbf{S}_{n}+\gamma \mathbf{I}_{m}\right)^{-1} \mathbf{S}_{n}^{\boldsymbol{\top}} \mathbf{K}_{n}$

$C^{\top}=\mathrm{S}_{n}^{\top} \mathrm{K}_{n}$

Efficient Solution
4 Compute approximate solution
$\widetilde{\mathbf{w}}_{n}=\left(\widetilde{\mathbf{K}}_{n}+\mu \mathbf{I}\right)^{-1} \mathbf{y}_{n}=\frac{1}{\mu}\left(\mathbf{y}_{n}-\mathbf{C}\left(\mathbf{C}^{\boldsymbol{\top}} \mathbf{C}+\mu \mathbf{W}\right)^{-1} \mathbf{C}^{\boldsymbol{\top}} \mathbf{y}_{n}\right)$

Scalability now depends on m

Space $\left.: n^{2}\right) \Rightarrow \mathcal{O}(n m), \quad$ Time $=\mathcal{O}\left(n m^{2}+m^{3}\right)$

Problems:

? How to choose the sampling distribution?
How to choose m ?

References

[Alaoui and Mahoney(2015)] A. El Alaoui and M. W. Mahoney. Fast randomized kernel methods with statistical guarantees. In NIPS, 2015.
[Bach(2013)] F. Bach. Sharp analysis of low-rank kernel matrix approximations. In International Conference on Learning Theory, 2013.
[Calandriello et al.(2016)] D. Calandriello, A. Lazaric, and M. Valko. Analysis of NystrÄüm method with sequential ridge leverage scores. In UAI, 2016.
[Rudi et al.(2015)] A. Rudi, R. Camoriano, and L. Rosasco. Less is more: Nystrom computational regularization. In NIPS, 2015.

Kernel Ridge Leverage Scores (RLS) Sampling for KRR

Definition 1. Given a kernel matrix $\mathbf{K}_{n} \in \mathbb{R}^{n \times n}$, define
γ-ridge leverage score
$\tau_{n, i}(\gamma)=\mathbf{e}_{n, i} \mathbf{K}_{n}^{\top}\left(\mathbf{K}_{n}+\gamma \mathbf{I}_{n}\right)^{-1} \mathbf{e}_{n, i}$
$=\phi\left(\mathbf{x}_{i}\right)^{\top}\left(\phi\left(\mathbf{X}_{n}\right) \phi\left(\mathbf{X}_{n}\right)^{\top}+\gamma \mathbf{I}\right)^{-1} \phi\left(\mathbf{x}_{i}\right)$
effective dimension
$d_{e f f}(\gamma)_{n}=\sum_{i=1}^{n} \tau_{n, i}(\gamma)=\operatorname{Tr}\left(\mathbf{K}_{n}\left(\mathbf{K}_{n}+\gamma \mathbf{I}_{n}\right)^{-1}\right) \quad$ (2)
sampling distribution
$\left[\mathbf{p}_{n}\right]_{i}=p_{n, i}=\frac{\tau_{n, i}(\gamma)}{\sum_{j=1}^{n} \tau_{n, j}(\gamma)}=\frac{\tau_{n, i}}{d_{\text {eff }}(\gamma)_{n}}$
Proposition 1 (Alaoui, Mahoney, 2015). Let $\boldsymbol{\varepsilon}$ be the accuracy, δ the
confidence. If the regularized Nystrom approximation \mathbf{K}_{n} is computed using the sampling distribution $\left\{p_{i, t}\right\}$, and at least

$$
m \geq\left(\frac{2 d_{e f f}(\gamma)_{n}}{\varepsilon^{2}}\right) \log \left(\frac{n}{\delta}\right)
$$

columns, then with probability $1-\delta$

$$
0 \preceq \mathbf{K}_{n}-\widetilde{\mathbf{K}}_{n} \preceq \frac{\gamma}{1-\varepsilon} \mathbf{I}_{n}, \quad \mathcal{R}\left(\widetilde{\mathbf{w}}_{n}\right) \leq\left(1+\frac{\gamma}{\mu} \frac{1}{1-\varepsilon}\right)^{2} \mathcal{R}\left(\widehat{\mathbf{w}}_{n}\right)
$$

Intuitively: $\tau_{n, i}$ sensitivity of prediction on point \mathbf{x}_{i} $\Rightarrow \widehat{y}_{n, i}=\mathbf{e}_{i}^{\top}\left(\mathbf{K}_{n} \widehat{\mathbf{w}}_{n}\right)=\mathbf{e}_{i}^{\top} \mathbf{K}_{n}\left(\mathbf{K}_{n}+\mu \mathbf{I}\right)^{-1} \mathbf{y}_{n}$

SQUEAK

Lemma 1. Assume that the dictionary \mathcal{I}_{t-1} induces a γ-approx. $\widetilde{\mathbf{K}}_{t-1}$, and let $\overline{\mathbf{S}}_{t}$ be constructed by adding \bar{q} copies of $(\bar{q})^{-1 / 2} \mathbf{e}_{t, t}$ to the selection matrix. Then, denoting $\alpha=(1+\varepsilon) /(1-\varepsilon)$, for all i such that $i \in\left\{\mathcal{I}_{t-1} \cup\{t\}\right\}$,

$$
\widetilde{\tau}_{t, i}=\frac{1+\varepsilon}{\alpha \gamma}\left(k_{i, i}-\mathbf{k}_{t, i} \overline{\mathbf{S}}\left(\overline{\mathbf{S}}^{\top} \mathbf{K}_{t} \overline{\mathbf{S}}+\gamma \mathbf{I}\right)^{-1} \overline{\mathbf{S}}^{\top} \mathbf{k}_{t, i}\right),
$$

is an α-approximation of the $R L S \tau_{t, i}$, that is $\tau_{t, i}(\gamma) / \alpha \leq \widetilde{\tau}_{t, i} \leq \tau_{t, i}(\gamma)$.

SQUEAK

Input: Dataset \mathcal{D}, regularization γ, μ, \bar{q}
Output: $\mathbf{K}_{n}, \widetilde{\mathbf{w}}_{n}$
1: Initialize \mathcal{I}_{0} as empty, $\widetilde{p}_{1,0}=1$
2. for $t=1, \ldots, n$ do

Receive new column $\left[\overline{\mathbf{k}}_{t}, k_{t}\right]$
Compute α-app. RLS $\left.\left\{\widetilde{\tau}_{t, i}\right]: i \in \mathcal{I}_{t-1} \cup\{t\}\right\}$, using $\mathcal{I}_{t-1},\left[\overline{\mathbf{k}}_{t}, k_{t}\right]$, and Eq. 4 Set $\widetilde{p}_{t, i}=\max \left\{\min \left\{\tilde{\tau}_{t, i}, \widetilde{p}_{t-1, i}\right\}, \tilde{p}_{t-1, i} / 2\right\}$
6: Initialize $\mathcal{I}_{t}=\emptyset$

\section*{| 7: | for |
| :--- | :--- |
| 8: | |}

$$
\begin{array}{r}
9: \\
10: \\
11: \\
12:
\end{array}
$$

10:
$11:$
12:
10
12: \quad end if
13:
14: $\quad \overline{Q_{t, t} \sim \mathcal{B}\left(\widetilde{p}_{t, t}, \bar{q}\right)}$
$\left\{\begin{array}{ll}\text { 15: } & \text { Add } Q_{t, t} \text { copies of }\left(t, \mathbf{k}_{t, t}, \widetilde{p}_{t, t}\right) \text { to } \mathcal{I}_{t} \\ \text { 16: } & \text { Compute } \widetilde{\mathbf{K}}^{\text {13sing }} \mathcal{I}_{n} \text { and } \widetilde{\mathrm{w}}_{t} \widetilde{\mathbf{K}}_{t, \mathbf{v}_{t}}\end{array}\right\}$
17: end for

- $\widetilde{\tau}_{t, i}=\mathbf{e}_{i}^{\top} \widetilde{\mathbf{K}}_{t}\left(\widetilde{\mathbf{K}}_{t}+\gamma \mathbf{I}\right)^{-1} \mathbf{e}_{i}$ would fail
- Instead, approximate $\tau_{t, i}$ directly in RKHS $\widetilde{\tau}_{t, i}=\phi\left(\mathbf{x}_{i}\right)^{\top}\left(\phi\left(\mathbf{X}_{t}\right) \overline{\mathbf{S S}}^{\top} \phi\left(\mathbf{X}_{t}\right)^{\top}+\gamma \mathbf{I}\right)^{-1} \phi\left(\mathbf{x}_{i}\right)$ and then reformulate using kernel trick
- $\widetilde{\tau}_{t, i}$ can be computed in $\mathcal{O}\left(\left|\mathcal{I}_{t}\right|^{2}\right)$ space and $\mathcal{O}\left(\left|\mathcal{I}_{t}\right|^{3}\right)$ time, independent from t.
- $\widetilde{\tau}_{t, i}$ for samples in \mathcal{I}_{t} can be computed using only samples contained in \mathcal{I}_{t}.
- α trades off accuracy and space/time cost
- The formulation of $\widetilde{\tau}_{t, i}$ is not incremental

Proposition 2. For any kernel matrix \mathbf{K}_{t-1} and its bordering \mathbf{K}_{t},
$\tau_{t, i} \leq \tau_{t-1, i}, \quad d_{\text {eff }}(\gamma)_{t} \geq d_{\text {eff }}(\gamma)_{t-1}$.

Theorem 1. Let $\alpha=\left(\frac{1+\varepsilon}{1-\varepsilon}\right)$ and $\gamma>1$. For any $0 \leq \varepsilon \leq 1$, and $0 \leq \delta \leq 1$, if
we run SQUEAK with $\bar{q}=\mathcal{O}\left(\frac{\alpha}{\varepsilon^{2}} \log \left(\frac{n}{\delta}\right)\right)$, then w.p. $1-\bar{\delta}$, for all $t \in[n]$
(1) $\widetilde{\mathbf{K}}_{t}$ computed with \mathcal{I}_{t} is a γ-approximation of \mathbf{K}_{t}.
(2) $\left|\mathcal{I}_{t}\right|=\sum_{i} Q_{t, i} \leq \mathcal{O}\left(\bar{q} d_{e f f}(\gamma)_{t}\right) \leq \mathcal{O}\left(\frac{\alpha}{\varepsilon^{2}} \boldsymbol{d}_{\text {eff }}(\gamma)_{n} \log \left(\frac{n}{\delta}\right)\right)$.
(3) The solution $\widetilde{\mathbf{w}}_{t}$ satisfies $\mathcal{R}\left(\widetilde{\mathbf{w}}_{t}\right) \leq\left(1+\frac{\gamma}{\mu} \frac{1}{1-\varepsilon}\right) \mathcal{R}\left(\widehat{\mathbf{w}}_{t}\right)$.

	Time	Space	Acc. loss	Inc.
Exact	n^{3}	n^{2}	1	/
Bach'13	$\frac{n d_{\text {max }}{ }^{2}+d_{\text {max }}{ }^{3}}{\varepsilon}$	$\frac{n d_{\text {max }}}{\varepsilon}$	$(1+4 \varepsilon)$	No
A\&M'15	$n(\text { space })^{2}$	$\left(\frac{\lambda_{\min }+n \mu \varepsilon}{\lambda_{\min }-n \mu \varepsilon}\right) n d_{\mathrm{eff}}+\frac{\operatorname{Tr}\left(\mathbf{K}_{n}\right)}{\mu \varepsilon}$	$(1+2 \varepsilon)^{2}$	No
INK (C\&al'16)	$\rho^{2} n^{2} d_{\text {eff }}{ }^{2}$	$\frac{\rho \text { nd } d_{\text {eff }}}{\varepsilon}$	$(1+2 \varepsilon)^{2}$	Yes
SQUEAK	$\frac{n^{2} d_{\text {of }}{ }^{\text {a }}}{\varepsilon^{2}}$	$\frac{e_{\text {dff }}}{\varepsilon_{\text {efe }}}$	$(1+2 \varepsilon)^{2}$	Yes

Pros:

Accuracy and space/time guarantees

+ Unnormalized $\widetilde{p}_{t, i}$, no need for appr. $d_{\text {eff }}(\gamma)$ In worst case, only $\log (n)$ space overhead Anytime risk guarantees

Cons:

The time bottleneck is computing intermediate KRR solutions: $\mathcal{O}\left(t\left|\mathcal{I}_{t}\right|^{2}\right)$.

Still potentially constructs the whole matrix to compute KRR, single pass over marix but not dataset

Beyond sequential KRR

What if we run SQUEAK simply to approximate \mathbf{K}_{n} ?

- Only need to compute RLS for points in \mathcal{I}_{t}, never recompute after dropping
\longrightarrow Never construct the whole \mathbf{K}_{n}, subquadratic runtime $\left.{ }^{2} \mid \mathcal{I}_{n}{ }^{2}\right) \Rightarrow \mathcal{O}\left(n\left|\mathcal{I}_{n}\right|^{3}\right)$
- Store points directly in the dictionary
$\longrightarrow \mathcal{O}\left(d_{\text {eff }}(\gamma)_{n}^{2}+d_{\text {eff }}(\gamma)_{n} d\right)$ space constant in n, single pass over the dataset (streaming)
- Extend Dict-Update (add point to dictionary) to Dict-Merge (add dictionary to dictionary)
\rightarrow Distributed SQUEAK, multiple nodes operate in parallel, without sharing memory recursively merge result to build final dictionary, $\mathcal{O}\left(\log (n)\left|\mathcal{I}_{n}\right|^{3}\right)$ time, $\mathcal{O}\left(n\left|\mathcal{I}_{n}\right|^{3}\right)$ work
- RLS sampling preserves well the projection on \mathbf{K}_{n} 's range
$\mathbf{P}=\mathbf{K}_{n}^{1 / 2}\left(\mathbf{K}_{n}+\gamma \mathbf{I}\right)^{-1} \mathbf{K}_{n}^{1 / 2}=\phi\left(\mathbf{X}_{n}\right)^{\boldsymbol{\top}}\left(\phi\left(\mathbf{X}_{n}\right) \phi\left(\mathbf{X}_{n}\right)^{\boldsymbol{\top}}+\gamma \mathbf{I}\right)^{-1} \phi\left(\mathbf{X}_{n}\right)$
\longrightarrow SQUEAK provides strong guarantees for many Kernel problems (random/fixed design KRR, Kernel PCA, Kernel k-means)

