# Analysis of Nyström Method with Sequential Ridge Leverage Score Sampling 

Daniele Calandriello, Alessandro Lazaric, Michal Valko

## Motivation

- Kernel regression is versatile and accurate
- Strong accuracy guarantees but poor scalability
$\mathcal{O}\left(n^{3}\right)$ time $\mathcal{O}\left(n^{2}\right)$ space ( $n$ number of samples)
- Current limitation: Many approximate schemes are either not scalable or not accurate
$\Rightarrow$ We propose an incremental approximation scheme for kernel regression with complexity and error guarantees depending on the kernel structure


## Kernel Ridge Regression (KRR)

## The setting (fixed-design)

- Dataset $\mathcal{D}=\left\{\mathbf{x}_{t}, y_{t}\right\}_{t=1}^{n}$
arbitrary $\mathbf{x}_{t} \in \mathcal{X}$
$y_{t}=f^{*}\left(\mathbf{x}_{t}\right)+\eta_{t}$
- Kernel function $\mathcal{K}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$
- Kernel matrix $\mathbf{K}_{t} \in \mathbb{R}^{t \times t}$, with $\left[\mathbf{K}_{t}\right]_{i, j}=\mathcal{K}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right), i, j \leq t$


## Kernel regression

- Objective (after $t$ samples)

$$
\widehat{\mathbf{w}}_{t}=\arg \min \left\|\mathbf{y}_{t}-\mathbf{K}_{t} \mathbf{w}\right\|^{2}+\boldsymbol{\mu}\|\mathbf{w}\|^{2} .
$$

- Closed-form solution
- On-sample risk

$$
\mathcal{R}\left(\widehat{\mathbf{w}}_{t}\right)=\mathbb{E}_{\eta}\left[\left\|\mathbf{f}_{t}^{*}-\mathbf{K}_{t} \widehat{\mathbf{w}}_{t}\right\|^{2}\right]
$$

## NYSTRÖM APPROXIMATION

## Subsampling

1 Select a subset (dictionary) $\mathcal{I}_{n}$ of $m$ representative samples Constructs a sparse matrix $\mathbf{S}_{n}$ to select and reweight the columns associated with the points in $\mathcal{I}_{n}$


Low-Rank Approximation
3 Compute approximate, low-rank matrix $\widetilde{\mathbf{K}}_{n}=\mathbf{C W}^{-1} \mathbf{C}^{\boldsymbol{\top}}$ as $\widetilde{\mathbf{K}}_{n}=\mathbf{C W} \mathbf{W}^{-1} \mathbf{C}^{\boldsymbol{\top}}=\mathbf{K}_{n} \mathbf{S}_{n}\left(\mathbf{S}_{n}^{\top} \mathbf{K}_{n} \mathbf{S}_{n}+\gamma \mathbf{I}_{m}\right)^{-1} \mathbf{S}_{n}^{\top} \mathbf{K}_{n}$

$\boldsymbol{W}^{-1}=\left(\mathbf{S}_{n}^{\top} \mathbf{K}_{n} \mathbf{S}_{n}+\gamma \mathbf{I}_{m}\right)^{-1}$

$C^{\top}=\mathrm{S}_{n}^{\top} \mathrm{K}_{n}$

## Efficient Solution

4 Compute approximate solution
$\widetilde{\mathbf{w}}_{n}=\left(\widetilde{\mathbf{K}}_{n}+\mu \mathbf{I}\right)^{-1} \mathbf{y}_{n}=\frac{1}{\mu}\left(\mathbf{y}_{n}-\mathbf{C}\left(\mathbf{C}^{\boldsymbol{\top}} \mathbf{C}+\mu \mathbf{W}\right)^{-1} \mathbf{C}^{\boldsymbol{\top}} \mathbf{y}_{n}\right)$
Scalability now depends on $m$
Space: $\left(n^{2}\right) \Rightarrow \mathcal{O}(n m), \quad$ Time $:\left(n^{3}\right) \Rightarrow \mathcal{O}\left(n m^{2}+m^{3}\right)$
Problems:
? How to choose the sampling distribution?
How to choose $m$ ?

## References

[Alaoui and Mahoney(2015)] Ahmed El Alaoui and Michael W. Mahoney Fast randomized kernel methods with statistical guarantees. In Neural Information Processing Systems, 2015
[Bach(2013)] Francis Bach. Sharp analysis of low-rank kernel matrix approximations. In International Conference on Learning Theory, 2013.
[Pachocki(2016)] Jakub Pachocki. Analysis of resparsification. arXiv preprint arXiv:1605.08194, 2016
[Rudi et al.(2015)] Alessandro Rudi, Raffaello Camoriano, and Lorenzo Rosasco. Less is more: Nyström computational regularization. In Neural Information Processing Systems, 2015.

Kernel Ridge Leverage Scores (RLS) Sampling for KRR


Definition 1. Given a kernel matrix $\mathbf{K}_{n} \in \mathbb{R}^{n \times n}$, define
$\gamma$-ridge leverage score
$\tau_{i, n}(\gamma)=\mathbf{k}_{i, n}^{\top}\left(\mathbf{K}_{n}+\gamma \mathbf{I}_{m}\right)^{-1} \mathbf{e}_{i, n}$
effective dimension $\quad d_{\text {eff }}(\gamma)_{n}=\sum_{i=1}^{n} \tau_{i, n}(\gamma)=\operatorname{Tr}\left(\mathbf{K}_{n}\left(\mathbf{K}_{n}+\gamma \mathbf{I}_{n}\right)^{-1}\right)$
sampling distribution
$\left[\mathbf{p}_{n}\right]_{i}=p_{i, n}=\frac{\tau_{i, n}(\gamma)}{\sum_{j=1}^{n} \tau_{i, n}(\gamma)}=\frac{\tau_{i, n}}{d_{e f f}(\gamma)_{n}}$

Proposition 1 (Alaoui, Mahoney, 2015). Let $\boldsymbol{\varepsilon}$ be the accuracy, $\delta$ the confidence. If the regularized Nystrom approximation $\widetilde{\mathbf{K}}_{n}$ is computed using the sampling distribution $\left\{p_{i, t}\right\}$, and at least

$$
m \geq\left(\frac{2 d_{e f f}(\gamma)_{n}}{\varepsilon^{2}}\right) \log \left(\frac{n}{\delta}\right)
$$

columns, then with probability $1-\delta$

$$
0 \preceq \mathbf{K}_{n}-\widetilde{\mathbf{K}}_{n} \preceq \frac{\gamma}{1-\varepsilon} \mathbf{I}_{n}, \quad \mathcal{R}\left(\widetilde{\mathbf{w}}_{n}\right) \leq\left(1+\frac{\gamma}{\mu} \frac{1}{1-\varepsilon}\right)^{2} \mathcal{R}\left(\widehat{\mathbf{w}}_{n}\right)
$$

Intuitively: $\tau_{i, n}$ sensitivity of prediction on point $\mathbf{x}_{i}$
$\Rightarrow \widehat{y}_{i, n}=\mathbf{e}_{i}^{\top}\left(\mathbf{K}_{n} \widehat{\mathbf{w}}_{n}\right)=\mathbf{e}_{i}^{\top} \mathbf{K}_{n}\left(\mathbf{K}_{n}+\mu \mathbf{I}\right)^{-1} \mathbf{y}_{n}$


## InCREMENTAL Estimates of RLS and Efrective Dimension

For any column $i$ in $\mathcal{I}_{t}$ and $\mathbf{k}_{t+1}$ compute the ridge leverage Compute the effective dimension estimator $\tilde{d}_{\mathrm{eff}}(\gamma)_{t+1}=\tilde{d}_{\mathrm{eff}}(\gamma)_{t}+\alpha \Delta_{t}$ score estimator ( $\alpha=\frac{2-\varepsilon}{1-\varepsilon}$ )

$$
\widetilde{\tau}_{i, t+1}=\frac{1}{\alpha \gamma}\left(k_{i, i}-\mathbf{k}_{i, t+1}^{\top}\left(\overline{\mathbf{K}}_{t+1}+\alpha \gamma \mathbf{I}\right)^{-1} \mathbf{k}_{i, t+1}\right)
$$

- $\widetilde{\tau}_{i, t+1}=\mathbf{e}_{i}^{\top} \widetilde{\mathbf{K}}_{t}\left(\widetilde{\mathbf{K}}_{t}+\gamma \mathbf{I}\right)^{-1} \mathbf{e}_{i}$ would fail
- $\widetilde{\tau}_{i, t+1}$ is computed only for columns stored in $\mathcal{I}_{t}$ (accurate)
- $\widetilde{\tau}_{i, t+1}$ can be computed in a space/time efficient way
- $\alpha$ trades off accuracy of the estimator and space/time cost
$\widetilde{\Delta}_{t}=\underline{\left(k_{t+1}-\overline{\mathbf{k}}_{t+1}{ }^{\top}\left(\widetilde{\mathbf{K}}_{t}+\alpha \gamma \mathbf{I}\right)^{-1} \overline{\mathbf{k}}_{t+1}-\frac{(1-\varepsilon)^{2}}{4} \gamma \overline{\mathbf{k}}_{t+1}{ }^{\top}\left(\widetilde{\mathbf{K}}_{t}+\gamma \mathbf{I}\right)^{-2} \overline{\mathbf{k}}_{t+1}\right)}$ $k_{t+1}+\gamma-\overline{\mathbf{k}}_{t+1}{ }^{\top}\left(\widetilde{\mathbf{K}}_{t}+\alpha \gamma \mathbf{I}\right)^{-1} \overline{\mathbf{k}}_{t+1}$
- $\widetilde{\mathrm{d}}_{\text {eff }}(\gamma)_{t+1}=\sum_{i=1}^{t+1} \widetilde{\tau}_{i, t+1}$ requires $\widetilde{\tau}_{i, t+1}$ for $i \notin \mathcal{I}_{t}$ (not accurate)
- $\widetilde{\Delta}_{t}$ captures the interaction between the new and past samples
- $\widetilde{\Delta}_{t}$ requires approximating "second order" terms for which first order reconstruction guarantees ( $\mathbf{0} \preceq \mathbf{K}_{t}-\widetilde{\mathbf{K}}_{t} \preceq \frac{\gamma}{1-\varepsilon} \mathbf{I}$ ) are not enough


Lemma 1. Let $\varepsilon$ be the accuracy and $\rho=\lambda_{\max }\left(\mathbf{K}_{n}\right) / \gamma$ a soft condition number. If after $t$ samples $\widetilde{\mathbf{K}}_{t}$ is such that $\mathbf{0} \preceq \mathbf{K}_{t}-\widetilde{\mathbf{K}}_{t} \preceq \frac{\gamma}{1-\varepsilon} \mathbf{I}$, then for $\alpha=\frac{2-\varepsilon}{1-\varepsilon}$ and $\beta=\left(\frac{2-\varepsilon}{1-\varepsilon}\right)^{2}(1+\rho)$, the estimators satisfy for any $i \in\left\{\mathcal{I}_{t} \cup t+1\right\}$
$\frac{1}{\boldsymbol{\alpha}} \tau_{i, t+1}(\gamma) \leq \widetilde{\tau}_{i, t+1} \leq \mathbf{1} \cdot \tau_{i, t+1}(\gamma), \quad \mathbf{1} \cdot d_{\text {eff }}(\gamma)_{t+1} \leq \widetilde{d}_{\text {eff }}(\gamma)_{t+1} \leq \boldsymbol{\beta} d_{\text {eff }}(\gamma)_{t+1}$.
and the estimated probabilities satisfy
$\frac{\mathbf{1}}{\boldsymbol{\alpha} \boldsymbol{\beta}} p_{i, t+1} \leq \widetilde{p}_{i, t+1} \leq \boldsymbol{1} \cdot p_{i, t+1}$

## INK-EsTIMATE

## INK-Estimate

Input: Dataset $\mathcal{D}$, regularization $\gamma$, sampling budget $\bar{q}$
Output: $\widetilde{\mathbf{K}}_{n}, \mathbf{S}_{n}$
1: Initialize $\mathcal{I}_{0}$ as empty, $\widetilde{p}_{1,0}=1, b_{1,0}=1$, budget $\bar{q}$
2: for $t=0, \ldots, n-1$ do
3: Receive new column $\overline{\mathbf{k}}_{t+1}$ and scalar $k_{t+1}$
4: Compute approximate leverage scores $\left\{\tilde{\tau}_{i, t+1}: i \in \mathcal{I}_{t} \cup\{t+1\}\right\}$ Compute approximate effective dimension $\tilde{d}_{\text {eff }}(\gamma)_{t+1}$ Set $\widetilde{p}_{i, t+1}=\min \left\{\widetilde{z}_{i, t+1} / \widetilde{d}_{\text {eff }}(\gamma)_{t+1}, \widetilde{p}_{i, t}\right\}$ $\mathcal{I}_{t+1}, \tilde{\mathbf{b}}_{t+1}=\operatorname{Shrink}-\operatorname{Expand}\left(\mathcal{I}_{t}, \widetilde{\mathbf{p}}_{t+1}, \mathbf{b}_{t}, \bar{q}\right)$ Compute $\mathbf{S}_{t+1}$ using $\mathcal{I}_{t+1}$ and weights $\sqrt{\mathbf{K}_{b}, t+1}$ Compute $\widetilde{\mathbf{K}}_{t+1}$ using $\mathbf{S}_{t+1}$
10: end for
11: Return $\widetilde{\mathbf{K}}_{n}$ and $\mathbf{S}_{n}$

Theorem 1. Let $\varepsilon$ be the desired accuracy and $\rho=\lambda_{\max }\left(\mathbf{K}_{n}\right)$ a soft condition number. If INK-Estimate is run with

$$
\bar{q} \geq\left(\frac{28 \alpha \beta d_{e f f}(\gamma)_{t}}{\varepsilon^{2}}\right) \log \left(\frac{4 t}{\delta}\right)
$$

then the approximate kernel solution $\widetilde{w}_{n}$ satisfies

$$
\mathcal{R}\left(\widetilde{w}_{n}\right) \leq\left(1+\frac{\gamma}{\mu} \frac{1}{1-\varepsilon}\right)^{2} \mathcal{R}\left(\widehat{w}_{n}\right)
$$

and INK-Estimate runs in at most
$\mathcal{O}(n \bar{q}) \leq \widetilde{\mathcal{O}}\left(\boldsymbol{n} \boldsymbol{\rho} \boldsymbol{d}_{\text {eff }}(\gamma)_{n}\right)$
$\mathcal{O}\left(n^{2} \bar{q}^{2}+n \bar{q}^{3}\right) \leq \widetilde{\mathcal{O}}\left(\boldsymbol{n}^{2} \boldsymbol{\rho}^{2} \boldsymbol{d}_{\text {eff }}(\gamma)_{n}^{2}\right)$
space,
time

Shrink-Expand (Pachocki, 2016)
Input: $\left.\mathcal{I}_{t},\left\{\widetilde{\mathcal{p}}_{i, t+1}, b_{i, t}\right): i \in \mathcal{I}_{t}\right\}, \widetilde{p}_{t+1, t+1}, \bar{q}$
Output: $\mathcal{I}_{t+1}$, the set of all columns with $b_{i, t+1} \neq 0$ 1: $b_{i, t+1}=b_{i, t}$ for all $i \in[t], b_{t+1, t+1}=1$ 2: for all $i \in\{1, \ldots, t\}: b_{i, t} \neq 0$ do $\quad \square$ Shrink while $b_{i, t+1} \widetilde{p}_{i, t+1} \leq 1 / \bar{q}$ do Sample a random Bernoulli $\mathcal{B}\left(\frac{b_{i, t+1}}{b_{i, t+1}+1}\right)$ On success set $b_{i, t+1}=b_{i, t+1}+$ On failure set $b_{i, t+1}=0$, break end while
: end for
9: while $b_{t+1, t+1} \widetilde{p}_{t+1, t+1} \leq 1 / \bar{q}$ do $\quad$ EXxPAND
10: Sample a random Bernoulli $\mathcal{B}\left(\frac{b_{t+1, t+1}}{b_{t+1, t+1}+1}\right)$ On success set $b_{t+1, t+1}=b_{t+1, t+1}$ On failure set $b_{t+1, t+1}=0$, break
end while


|  | Time | Space | Acc. loss | Inc. |
| :---: | :---: | :---: | :---: | :---: |
| Exact | $n^{3}$ | $n^{2}$ | 1 | / |
| Bach'13 | $\frac{n d_{\text {max }}{ }^{2}+d_{\text {max }}{ }^{3}}{\varepsilon}$ | $\stackrel{n d_{\text {max }}}{\varepsilon}$ | $(1+4 \varepsilon)$ | No |
| A\&M'15 | $n(\text { space })^{2}$ | $\left(\frac{\lambda_{\text {min }}+n \mu \varepsilon}{\lambda_{\text {min }}-n \mu \varepsilon}\right) n d_{\text {eff }}+\frac{\operatorname{Tr}\left(\mathbf{K}_{n}\right)}{\mu \varepsilon}$ | $(1+2 \varepsilon)^{2}$ | No |
| Ink-Est | $\frac{\rho^{2} n^{2} d_{\text {eff }}{ }^{2}}{}$ | $\underline{\text { ond } \mathrm{deff}^{\varepsilon}}$ | $(1+2 \varepsilon)^{2}$ | Yes |

Lemma 2. For any kernel matrix $\mathbf{K}_{t}$ at time , and its bordering $\mathbf{K}_{t+1}$ at time $t+1$,

$$
\frac{\tau_{i, t+1}}{d_{\text {eff } t+1}}=\boldsymbol{p}_{i, t+1} \leq \boldsymbol{p}_{i, t}=\frac{\tau_{i, t+1}}{d_{\text {efft }}} .
$$

## Pros:

+ Accuracy and space/time guarantees
+ In the worst case, only $\sqrt{n}$ space overhead (wrt exact method)

Anytime risk guarantees

## Cons:

The time complexity is not fully satisfactory The current formulation of the estimators is not "fully" incremental

[^0]
[^0]:    Open questions
    ? Removing the dependency on $\rho$
    ? Random design (Rudi et al., 2015) ? Online learning

