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Motivation
I Kernel regression is versatile and accurate

I Strong accuracy guarantees but poor scalability

O(n3) time O(n2) space (n number of samples)

I Current limitation: Many approximate schemes are either not
scalable or not accurate

⇒We propose an incremental approximation scheme for kernel

regression with complexity and error guarantees depending on

the kernel structure

Kernel Ridge Regression (KRR)
The setting (�xed-design)

I Dataset D = {xt, yt}nt=1

� arbitrary xt ∈ X
� yt = f∗(xt) + ηt

I Kernel function K : X × X → R

I Kernel matrix Kt ∈ Rt×t, with [Kt]i,j = K(xi,xj), i, j ≤ t

Kernel regression

I Objective (after t samples)

ŵt = arg min
w

‖yt −Ktw‖2 + µ‖w‖2.

I Closed-form solution

ŵt = (Kt + µI)−1yt
I On-sample risk

R(ŵt) = Eη
[
‖f∗t −Ktŵt‖2

]
Nyström Approximation
Subsampling
1 Select a subset (dictionary) In of m representative samples
2 Constructs a sparse matrix Sn to select and reweight the columns
associated with the points in In

In = {7, 8, 2, 4}
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Low-Rank Approximation
3 Compute approximate, low-rank matrix K̃n = CW−1CT as

K̃n = CW−1CT = KnSn
(
ST
nKnSn + γIm

)−1
ST
nKn

+

−1

C = KnSn

CT = STnKnW−1 = (STnKnSn + γIm)−1

E�cient Solution
4 Compute approximate solution

w̃n = (K̃n + µI)−1yn =
1

µ

(
yn −C

(
CTC + µW

)−1
CTyn

)
Scalability now depends on m

Space:O(n2) ⇒ O(nm), Time:O(n3) ⇒ O(nm2 +m3)

Problems:
? How to choose the sampling distribution?
? How to choose m?

Kernel Ridge Leverage Scores (RLS) Sampling for KRR
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De�nition 1. Given a kernel matrix Kn ∈ Rn×n, de�ne

γ-ridge leverage score τi,n(γ) = kT
i,n(Kn + γIm)−1ei,n (1)

e�ective dimension de�(γ)n =
∑n

i=1
τi,n(γ) = Tr

(
Kn(Kn + γIn)−1

)
(2)

sampling distribution [pn]i = pi,n =
τi,n(γ)∑n
j=1 τi,n(γ)

=
τi,n

de�(γ)n
(3)

Proposition 1 (Alaoui, Mahoney, 2015). Let ε be the accuracy, δ the

con�dence. If the regularized Nystrom approximation K̃n is computed

using the sampling distribution {pi,t}, and at least

m ≥
(

2de�(γ)n

ε2

)
log
(n
δ

)
columns, then with probability 1− δ

0 � Kn − K̃n �
γ

1− εIn, R(w̃n) ≤
(

1 +
γ

µ

1

1− ε

)2

R(ŵn)

Intuitively: τi,n sensitivity of prediction on point xi
⇒ ŷi,n = eTi (Knŵn) = eTi Kn(Kn + µI)−1yn

Pros: + m scales with the e�ective dimension
+ the risk for w̃n is almost the same as
for the exact solution

Cons:
- computing τi,n(µ) is as di�cult as solving
the original problem
- the probabilities need be recomputed at

any new sample (=multipass)

Incremental Estimates of RLS and Effective Dimension

For any column i in It and kt+1 compute the ridge leverage
score estimator (α = 2−ε

1−ε )

τ̃i,t+1 =
1

αγ

(
ki,i − kT

i,t+1

(
Kt+1 + αγI

)−1
ki,t+1

)
Compute the e�ective dimension estimator d̃e�(γ)t+1 = d̃e�(γ)t+α∆̃t

with

∆̃t =

(
kt+1 − kt+1

T
(
K̃t + αγI

)−1
kt+1 − (1−ε)2

4
γkt+1

T
(
K̃t + γI

)−2
kt+1

)
kt+1 + γ − kt+1

T
(
K̃t + αγI

)−1
kt+1

I τ̃i,t+1 = eTi K̃t(K̃t + γI)−1ei would fail

I τ̃i,t+1 is computed only for columns stored in It (accurate)
I τ̃i,t+1 can be computed in a space/time e�cient way

I α trades o� accuracy of the estimator and space/time cost

I d̃e�(γ)t+1 =
∑t+1
i=1 τ̃i,t+1 requires τ̃i,t+1 for i /∈ It (not accurate)

I ∆̃t captures the interaction between the new and past samples

I ∆̃t requires approximating �second order� terms for which �rst order
reconstruction guarantees (0 � Kt − K̃t � γ

1−εI) are not enough

Lemma 1. Let ε be the accuracy and ρ = λmax(Kn)/γ a soft condition number.

If after t samples K̃t is such that 0 � Kt − K̃t � γ
1−εI, then for α = 2−ε

1−ε and

β =
(

2−ε
1−ε

)2
(1 + ρ), the estimators satisfy for any i ∈ {It ∪ t+ 1}

1

α
τi,t+1(γ) ≤ τ̃i,t+1 ≤ 1 · τi,t+1(γ), 1 · de�(γ)t+1 ≤ d̃e�(γ)t+1 ≤ βde�(γ)t+1.

and the estimated probabilities satisfy

1

αβ
pi,t+1 ≤ p̃i,t+1 ≤ 1 · pi,t+1

INK-Estimate

INK-Estimate

Input: Dataset D, regularization γ, sampling budget q
Output: K̃n, Sn

1: Initialize I0 as empty, p̃1,0 = 1, b1,0 = 1, budget q
2: for t = 0, . . . , n− 1 do

3: Receive new column kt+1 and scalar kt+1

4: Compute approximate leverage scores {τ̃i,t+1 : i ∈ It∪{t+1}}
5: Compute approximate e�ective dimension d̃e�(γ)t+1

6: Set p̃i,t+1 = min{τ̃i,t+1/d̃e�(γ)t+1, p̃i,t}
7: It+1,bt+1 = Shrink-Expand(It, p̃t+1,bt, q)
8: Compute St+1 using It+1 and weights

√
bi,t+1

9: Compute K̃t+1 using St+1

10: end for

11: Return K̃n and Sn

Theorem 1. Let ε be the desired accuracy and ρ = λmax(Kn)/γ
a soft condition number. If INK-Estimate is run with

q ≥
(

28αβde�(γ)t

ε2

)
log

(
4t

δ

)
,

then the approximate kernel solution w̃n satis�es

R(w̃n) ≤
(

1 +
γ

µ

1

1− ε
)2
R(ŵn)

and INK-Estimate runs in at most

O(nq) ≤ Õ(nρde�(γ)n) space,

O(n2q2 + nq3) ≤ Õ(n2ρ2de�(γ)
2
n) time

Shrink-Expand (Pachocki, 2016)

Input: It, {(p̃i,t+1, bi,t) : i ∈ It}, p̃t+1,t+1, q
Output: It+1, the set of all columns with bi,t+1 6= 0
1: bi,t+1 = bi,t for all i ∈ [t], bt+1,t+1 = 1
2: for all i ∈ {1, . . . , t} : bi,t 6= 0 do .Shrink
3: while bi,t+1p̃i,t+1 ≤ 1/q do

4: Sample a random Bernoulli B
(

bi,t+1

bi,t+1+1

)
5: On success set bi,t+1 = bi,t+1 + 1
6: On failure set bi,t+1 = 0, break
7: end while

8: end for

9: while bt+1,t+1p̃t+1,t+1 ≤ 1/q do .Expand

10: Sample a random Bernoulli B
(

bt+1,t+1

bt+1,t+1+1

)
11: On success set bt+1,t+1 = bt+1,t+1 + 1
12: On failure set bt+1,t+1 = 0, break

13: end while

Time Space Acc. loss Inc.

Exact n3 n2 1 /

Bach'13 ndmax
2+dmax

3

ε
ndmax

ε (1 + 4ε) No

A&M'15 n(space)2
(
λmin+nµε
λmin−nµε

)
nde� + Tr(Kn)

µε (1 + 2ε)2 No

Ink-Est
ρ2n2de�

2

ε
ρnde�
ε (1 + 2ε)2 Yes

Lemma 2. For any kernel matrix Kt at time t,
and its bordering Kt+1 at time t+ 1,

τi,t+1

de�t+1

= pi,t+1 ≤ pi,t =
τi,t+1

de�t
·

Pros:

+ Accuracy and space/time guarantees

+ In the worst case, only
√
n space overhead

(wrt exact method)

+ Anytime risk guarantees

Cons:

- The time complexity is not fully satisfactory

- The current formulation of the estimators is
not �fully� incremental

Open questions:

? Removing the dependency on ρ

? Random design (Rudi et al., 2015)

? Online learning
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