

PARAMETER-FREE AND ADAPTIVE OPTIMIZATION UNDER MINIMAL ASSUMPTIONS

with Peter Bartlett and Victor Gabillon

SequeL @ Inria Lille - Nord Europe

Michal Valko

MCTS IN COMPUTER GO

Munos: From bandits to Monte-Carlo Tree Search: The optimistic principle applied to optimization and planning, 2014

MOGO – CRAZY STONE – ALPHAGO(O)

ALPHAGO ZERO CHEAT SHEET

https://medium.com/applied-data-science/alphago-zero-explained-in-one-diagram-365f5abf67e0

OPTIMIZE THIS!

. . .

How black-box is black-box?

What can black-box optimization guarantee?

What are the minimal assumptions?

What are the **absolutely** minimal assumptions?

- **Goal:** Maximize $f : \mathcal{X} \to \mathbb{R}$ given a budget of n evaluations.
- Challenges: *f* is *stochastic* and has *unknown smoothness*
- **Protocol:** At round t, select state x_t , observe r_t such that

$$\mathbb{E}[r_t|x_t] = f(x_t).$$

After *n* rounds, return a state x(n).

• Loss: $R_n = \sup_{x \in \mathcal{X}} f(x) - f(x(n))$

- For any h, \mathcal{X} is partitioned in K^h cells $(X_{h,i})_{0 \le i \le K^h 1}$.
- *K*-ary tree \mathcal{T}_{∞} where depth h = 0 is the whole \mathcal{X} .

HOW IT WORKS?

PARTITIONING: 2D

•

. . . .

			•	
•	۲	•	۲	•
			•	
•	•	•	•	•
•	•		•	

	•		•	
•	•	•	• • •	•
	•		•	
•	۲	•	۲	•
	•			

			_						-				
	•			•		•	•	•		•		•	
• • •	•	•	•	•	•	•	•	•	•	•		•	
	۲		•	•	•	•	•	•	•	•	•	•	
•	•	•		•		•	•	•		•		•	
• • •	•	•	•	•	•	•	•	•	•	•	••	•	
• • • •• • •	•	•	•	•	•	•	•	•	•	•		• •	•
•				•		•		•		•			
•	•	•		•		•	•	•		•		•	
			•	•	•	•		۲	•	•	•		

EXAMPLE: 1D

EXAMPLE: 1D

New point → refined upper-bound on f

EXAMPLE: 1D

Question: where should one sample the next point? **Answer:** select the point with highest upper bound!

a ZOO of possibilities

very few guarantee a global optimality

smoothness	deterministic	stochastic
known	D00	Zooming, HOO
unknown	DiRect, SOO, <mark>SequOOL</mark>	StoSOO, POO, <mark>StroquOOL</mark>

Which functions are difficult to optimize?

What is the right characterization of the problem?

minimax-optimal sample complexity

.

.

.

VIDEO EXAMPLES FOR THE CONTINUOUS FUNCTION OPTIMIZATION

COMPLICATED HISTORY

- Current state-of-the-art needs noise scale as input
 - If the noise is actually smaller, we find the optimum slower than we could
 - if the input happens to be deterministic, **we miss learning exponentially fast**
- Current state-of-the-art is are complicated META-ALGORITHM
 - explicitly running several algorithms that know the smoothness
 - VERY complicated analysis, high computational complexity

What is the price to pay for all this adaptivity and minimal assumptions?

			•	
•	۲	•	۲	•
			•	
•	•	•	•	•
•	•		•	

	•		•	
•	•	•	•••	•
	•		•	
	۲	•	۲	•

		•			•		•	•	•		•			•
•	•	•	•	•	Ċ	•	•••	•	•	•	•	•		•
		۲		•	•	•	•	•	•	•	•	•		•
•		•	•		•		•	•	•		•			•
•	•	•	•	•	•	•	•	•	•	•	•	•		•
•	•	•	•	•	•	•	•	•	•	•	•	·	•	• •
•					•		•		•		•			
•		•	•		•		•	•	•		•			•
•	•				•	•	•		۲		•	•		

hyper-parameter optimization!

SEQUOOL

Assumption 1 For any global optimum x^* , there exists $\nu > 0$ and $\rho \in (0,1)$ such that $\forall h \in \mathbb{N}, \forall x \in \mathcal{P}_{h,i_h^*}, f(x) \ge f(x^*) - \nu \rho^h$.

Definition 1 For any $\nu > 0$ and $\rho \in (0, 1)$, the **near-optimality dimension**³ $d(\nu, \rho)$ of f with respect to the partitioning \mathcal{P} and with associated constant C, is

$$d(\nu,\rho) \triangleq \inf \left\{ d' \in \mathbb{R}^+ : \exists C > 1, \forall h \ge 0, \mathcal{N}_h(3\nu\rho^h) \le C\rho^{-dh} \right\},\$$

where $\mathcal{N}_{h}(\varepsilon)$ is the number of cells $\mathcal{P}_{h,i}$ of depth h such that $\sup_{x \in \mathcal{P}_{h,i}} f(x) \geq f(x^{\star}) - \varepsilon$.

$f(x^*) - f(x) = \Theta(||x^* - x||) \quad f(x^*) - f(x) = \Theta(||x^* - x||^2)$

$$\ell(x,y) = ||x - y|| \to d = 0 \qquad \ell(x,y) = ||x - y|| \to d = D/2 \ell(x,y) = ||x - y||^2 \to d = 0$$

D=0

Let a function in such space have upper- and lower envelope around x^* of the same order, i.e., there exists constants $c \in (0, 1)$, and $\eta > 0$, such that for all $x \in \mathcal{X}$:

$$\min(\eta, c\ell(x, x^*)) \leq f(x^*) - f(x) \leq \ell(x, x^*).$$
(1)

Any function satisfying (1) lies in the gray area and possesses a lower- and upper-envelopes that are of same order around x^* .

Example of a function with different order in the upper and lower envelopes, when $\ell(x, y) = |x - y|^{\alpha}$:

$$f(x) = 1 - \sqrt{x} + (-x^2 + \sqrt{x}) \cdot (\sin(1/x^2) + 1)/2$$

The lower-envelope behaves like a square root whereas the upper one is quadratic. There is no semi-metric of the form $|x - y|^{\alpha}$ for which d < 3/2.

GRILL, V., MUNOS, NIPS 2015

function	A1	metric	A2	tree
Tunction		metric		

.

Parameters:
$$n, \mathcal{P} = \{\mathcal{P}_{h,i}\}$$
Initialization: Open $\mathcal{P}_{0,1}$. $h_{\max} = \left\lfloor \frac{n}{\log(n)} \right\rfloor$ For $h = 1$ to h_{\max} Open $\lfloor \frac{h_{\max}}{h} \rfloor$ cells $\mathcal{P}_{h,i}$ of depth h with largest values $f_{h,j}$.Output $x(n) = \underset{x_{h,i}:\mathcal{P}_{h,i}\in\mathcal{T}}{\operatorname{arg max}} f_{h,i}$.as we go deeper, we open less cells per depth

.

Number of evaluations:

$$1 + \sum_{h=1}^{h_{\max}} \left\lfloor \frac{h_{\max}}{h} \right\rfloor \le 1 + h_{\max} \sum_{h=1}^{h_{\max}} \frac{1}{h} = 1 + h_{\max} \overline{\log} h_{\max} \le n+1$$

OBSERVATION: The deeper we go, the better optimum we find.

Lemma 2 For any global optimum x^* with associated (ν, ρ) as defined in Assumption 1, for any depth $h \in [h_{\max}]$, if $\frac{h_{\max}}{h} \geq C\rho^{-d(\nu,\rho)h}$, we have $\perp_h = h$, while $\perp_0 = 0$.

SUMMARY: We go deep enough

MAIN RESULT

Theorem 3 Let W be the standard Lambert W function (see Section 2). For any function f and one of its global optima x^* with associated (ν, ρ) , and near-optimality dimension $d = d(\nu, \rho)$, we have, after n rounds, the simple regret of SequOOL bounded by

• If
$$d = 0$$
, $r_n \le \nu \rho^{\frac{1}{C} \left\lfloor \frac{n}{\log n} \right\rfloor}$.
• If $d > 0$, $r_n \le \nu e^{-\frac{1}{d} W \left(\frac{d \log(1/\rho)}{C} \left\lfloor \frac{n}{\log n} \right\rfloor \right)}$.

For more readability, Corollary 4 uses a lower bound on W (Hoorfar and Hassani, 2008).

Corollary 4 If d > 0, assumptions in Theorem 3 hold and $\lfloor n/\overline{\log n} \rfloor d \log \frac{1}{\rho}/C > e$,

$$r_n \le \nu \left(C/(d \log(1/\rho)) \right)^{\frac{1}{d}} \left(\log \left(n d \log(1/\rho)/C \right) \right)^{\frac{1}{d}} \left\lfloor n/\overline{\log n} \right\rfloor^{-\frac{1}{d}}$$

SUMMARY: $d=0 \rightarrow r < \rho^n$ AND $d>0 \rightarrow r < n^{1/d}$

28 Sequel

Figure 2: The StroquOOL Algorithm

Init: Open
$$\mathcal{P}_{0,1} h_{\max}$$
 times.
 $h_{\max} = \left\lfloor \frac{n}{2(\log_2 n+1)^2} \right\rfloor, p_{\max} = \lfloor \log_2 (h_{\max}) \rfloor.$
For $h = 1$ to h_{\max} \blacktriangleleft Exploration \blacktriangleright
For $p = \lfloor \log_2(h_{\max}/h) \rfloor$ down to 0
Open 2^p times the $\lfloor \frac{h_{\max}}{h2^p} \rfloor$
non-opened cells $\mathcal{P}_{h,i}$ with highest
values $\widehat{f}_{h,i}$ and given that $T_{h,i} \ge 2^p$.
For $p \in [0: p_{\max}] \blacktriangleleft$ Cross-validation \blacktriangleright
Evaluate h_{\max} times the candidates:
 $x(n,p) = \underset{(h,i)\in\mathcal{T}, T_{h,i}\ge 2^p}{\arg \max} \widehat{f}_{h,i}.$
Output $x(n) = \underset{\{x(n,p),p\in[0:p_{\max}]\}}{\arg \max} \widehat{f}(x(n,p))$

STROQUOOL

Parameters: $n, \mathcal{P} = \{\mathcal{P}_{h,i}\}$

StroquOOL(m= 2^p) tradeoffs

- **small** m: **quality estimates**

- big m: we can go deeper

opening more promising cells more often

picking up the best point, with n samples

OBSERVATION: The deeper we go, the better optimum we find.

Lemma 5 For any global optimum x^* with associated (ν, ρ) (see Assumption 1), with probability at least $1 - \delta$, for all depths $h \in \left[\left\lfloor \frac{h_{\max}}{2^p}\right\rfloor\right]$, for all $p \in [0 : \lfloor \log_2(h_{\max}/h) \rfloor]$, if $b\sqrt{\frac{\log(4n/\delta)}{2^{p+1}}} \leq \nu \rho^h$ and if $\frac{h_{\max}}{h2^p} \geq C\rho^{-d(\nu,\rho)h}$, we have $\perp_{h,p} = h$ while $\perp_{0,p} = 0$.

SUMMARY: We go deep enough

MAIN RESULT

Theorem 6 High-noise regime After n rounds, for any function f and one of its global optima x^* with associated (ν, ρ) , and near-optimality dimension denoted for simplicity $d = d(\nu, \rho)$, if $b \ge \nu \rho^{\tilde{h}} / \sqrt{\log(n^{3/2}/b)}$, the simple regret of StroquOOL obeys

$$r_n \leq \nu \rho^{\frac{1}{(d+2)\log(1/\rho)}} W\left(\left\lfloor \frac{n}{2(\log_2 n+1)^2} \right\rfloor \frac{(d+2)\log(1/\rho)\nu^2}{Cb^2\log(n^{3/2}/b)} \right) + 6b \sqrt{\log(n^{3/2}/b)} \left/ \left\lfloor \frac{n}{2(\log_2 n+1)^2} \right\rfloor^2,$$

SUMMARY: $r < n^{1/(d+2)}$ before it was $r < n^{1/d}$

STROQUOOL: ADAPTATION TO NOISE

Figure 3: Bottom right: Wrapped-sine function (d > 0). The true range of the noise band the range used by HOO and POO is \tilde{b} . Top: $b = 0, \tilde{b} = 1$ left — $b = 0.1, \tilde{b} = 1$ middle — $b = \tilde{b} = 1$ right. Bottom: $b = \tilde{b} = 0.1$ left — $b = 1, \tilde{b} = 0.1$ middle.

- we sample ~1/h = Zipf law (ex.: the frequency of any word is inversely proportional to its rank in the frequency table)
- Adaption to smoothness
- Adaptation to noise (no need to provide it as input)
 - even to the noise = 0 deterministic
 - deterministic case, exp(-n) for d=0, first exponential rate
 - before only possible with very strong assumptions
- Not a panacea: price to pay for minimal assumptions and global guarantee
 - hyper-parameter optimization
- adversarial/stochastic (COLT 2018)
- NEXT: make MCTS for faster by adapting it to noise

Michal Valko, SequeL, Inria Lille - Nord Europe, <u>michal.valko@inria.fr</u> <u>http://researchers.lille.inria.fr/~valko/hp/</u>

APPENDIX: PROOF SKETCH

$$f(x(n)) \stackrel{(a)}{\geq} f_{\perp_{h_{\max}}+1,i^{\star}} \stackrel{(b)}{\geq} f(x^{\star}) - \nu \rho^{\perp_{h_{\max}}+1}$$

DEFINITION: how deep we can go

$$\frac{h_{\max}}{\overline{h}} = C\rho^{-d\overline{h}}$$

PROPERTY: if we go that deep, we are near-optimal

$$\frac{h_{\max}}{\left\lfloor \overline{h} \right\rfloor} \ge \frac{h_{\max}}{\overline{h}} = C\rho^{-d\overline{h}} \ge C\rho^{-d\left\lfloor \overline{h} \right\rfloor}$$

SUMMARY: We go deep enough

$$\frac{r_n}{\nu} \le \rho^{\frac{1}{d\rho} \left(\log \left(\frac{h_{\max} d\rho/C}{\log(h_{\max} d\rho/C)} \right) \right)} = e^{\frac{1}{d\log(1/\rho)} \left(\log \left(\frac{h_{\max} d\rho/C}{\log \left(\frac{h_{\max} d\rho}{C} \right)} \right) \right)} = \left(\frac{h_{\max} d\rho/C}{\log \left(\frac{h_{\max} d\rho}{C} \right)} \right)^{-\frac{1}{d}}$$

$$33$$

- Sequel

34 Sequel

The Lambert W function Our results use the Lambert W function. Solving for the variable z, the equation $A = ze^z$ gives z = W(A). W is multivalued for $z \leq 0$. However, in this paper, we consider $z \geq 0$ and $W(z) \geq 0$, referred to as the *standard* W. W cannot be expressed in terms of elementary functions. Yet, we have $W(z) = \log (z/\log z) + o(1)$ (Hoorfar and Hassani, 2008). W has applications in physics and applied mathematics (Corless et al., 1996).

APPENDIX: LAMBERT W FUNCTION

 $z=f^{-1}\left(ze^{z}
ight)=W\left(ze^{z}
ight)$.

