
PARAMETER-FREE AND ADAPTIVE  
 OPTIMIZATION UNDER MINIMAL 

ASSUMPTIONS

with Peter Bartlett and Victor Gabillon 

SequeL @  Inria Lille — Nord Europe
Michal Valko 



MCTS IN COMPUTER GO

2. . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction to bandits

. . . . . .
MCTS

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Optimistic optimization

. . . . . . . . . . . . . . . . . . .
Unknown smoothness

. . . . . . . . . . . . . . . . . . .
Optimistic Planning

Initial motivation

Monte-Carlo Tree Search in computer-go

MCTS in Crazy-Stone (Rémi Coulom, 2005)

Idea: use bandits at each node of the tree search.
Munos: From bandits to Monte-Carlo Tree Search: The optimistic principle applied to optimization and planning, 2014



MOGO — CRAZY STONE — ALPHAGO(0)

3
https://medium.com/applied-data-science/alphago-zero-explained-in-one-diagram-365f5abf67e0

https://medium.com/applied-data-science/alphago-zero-explained-in-one-diagram-365f5abf67e0


OPTIMIZE THIS!
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BIG QUESTIONS?
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How black-box is black-box?

What can black-box optimization guarantee?

What are the minimal assumptions?

What are the absolutely minimal assumptions?



SETTING
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STOCHASTIC SIMULTANEOUS
OPTIMISTIC OPTIMIZATION

MICHAL.VALKO@INRIA.FR, A.CARPENTIER@STATSLAB.CAM.AC.UK, AND RÉMI.MUNOS@INRIA.FR

SETTING
STOSOO is a global function maximizer:

• Goal: Maximize f : X ! IR given a budget of n evaluations.

• Challenges: f is stochastic and has unknown smoothness

• Protocol: At round t, select state x
t

, observe r
t

such that

E[r
t

|x
t

] = f(x
t

).

After n rounds, return a state x(n).

• Loss: R
n

= sup

x2X f(x)� f(x(n))

STOSOO operates on a given hierarchical partitioning of X :

• For any h, X is partitioned in Kh cells (X
h,i

)

0iK

h�1

.

• K-ary tree T1 where depth h = 0 is the whole X .

h=0

h=2

h=1

• STOSOO adaptively creates finer and finer partitions of X .

• x
h,i

2 X
h,i

is a specific state per cell where f is evaluated

COMPARISON

deterministic
function deterministic stochastic

known
smoothness DOO Zooming or HOO

unknown
smoothness DIRECT or SOO STOSOO

Hierarchical optimistic optimization algorithms

ASSUMPTIONS
There exists a semi-metric ` on X (triangle inequality not required):

A1 Local smoothness of f : For all x 2 X :

f(x⇤
)� f(x)  `(x, x⇤

).

“f does not decrease too fast around x⇤”

x

⇤ X

f (x⇤) f

f(x⇤)� `(x, x⇤)

A2 Bounded diameters and well-shaped cells: There ex-
ists a decreasing sequence w(h) > 0, such that for any
depth h � 0 and for any cell X

h,i

of depth h, we have
sup

x2Xh,i
`(x

h,i

, x)  w(h). Moreover, there exists ⌫ > 0 such
that for any depth h � 0, any cell X

h,i

contains a `-ball of ra-
dius ⌫w(h) centered in x

h,i

.

MEASURE OF COMPLEXITY
For any " > 0, write the set of "-optimal states:

X
"

def

= {x 2 X , f(x) � f⇤ � ✏}

Definition 1 (near-optimality dimension). Smallest constant d such

that there exists C > 0, for all " > 0, the packing number of X
"

with `-
balls of radius ⌫✏ is less than C"�d

.

Illustration:

f(x⇤
)� f(x) = ⇥(||x⇤ � x||)

ε

ε

`(x, y) = ||x� y|| =) d = 0

f(x⇤
)� f(x) = ⇥(||x⇤ � x||2)

ε

ε

`(x, y) = ||x�y|| =) d = D/2
`(x, y) = ||x� y||2 =) d = 0

STOSOO ALGORITHM

Parameters: number of function evaluations n, maximum num-
ber of evaluations per node k > 0, maximum depth h

max

, and
� > 0.
Initialization:

T  {�[0, 0]} {root node}
t 0 {number of evaluations}
m 0 {number of leaf expansions}

while t  n do
b
max

 �1
for h = 0 to min(depth(T ), h

max

) do
if t  n then

For each leaf �[h, j] 2 L, compute its b-value:
b
h,j

(t) = µ̂
h,j

(t) +
p
log(nk/�)/(2T

h,j

(t))
Among leaves �[h, j] 2 L

t

at depth h, select

�[h, i] 2 argmax

�[h,j]2L
b
h,j

(t)

if b
h,i

(t) � b
max

then
if T

h,i

(t) < k then
Evaluate (sample) state x

t

= x
h,i

.
Collect reward r

t

(s.t. E[r
t

|x
t

] = f(x
t

)).
t t+ 1

else {i.e. T
h,i

(t) � k, expand this node}
Add the K children of �[h, i] to T
b
max

 b
h,i

(t)
end if

end if
end if

end for
end while
Output: The representative point with the highest µ̂

h,j

(n)
among the deepest expanded nodes:

x(n) = argmax

xh,j

µ̂
h,j

(n) s.t. h = depth(T \ L).

How it works?

• STOSOO iteratively traverses and builds a tree over X

• at each traversal it selects several nodes simultaneously

• the selection is optimistic, based on confidence bounds

• selected nodes are either sampled or expanded

• sample the node k times for a confident estimate of f(x
h,i

)

• returns the deepest expanded node

ANALYSIS
Main result:

Theorem 1. Let d be the ⌫/3-near-optimality dimension and C be

the corresponding constant. If the assumptions hold, then the loss of

STOSOO run with parameters k, h
max

, and � > 0, after n iterations is

bounded, with probability 1� �, as:

R
n

 2"+ w (min (h(n)� 1, h
"

, h
max

))

where " =
p

log(nk/�)/(2k) and h(n) is the smallest h 2 N, such that:

C(k + 1)h
max

hX

l=0

(w (l) + 2")
�d � n,

and h
"

is defined as:

h
"

= argmin{h 2 N : w(h+ 1) < "}.

Exponential diameters and d = 0:

Corollary 1. Assume that the diameters of the cells decrease exponen-

tially fast, i.e., w(h) = c�h

for some c > 0 and � < 1. Assume that the

⌫/3-near-optimality dimension is d = 0 and let C be the corresponding

constant. Then the expected loss of STOSOO run with parameters k,

h
max

=

p
n/k, and � > 0, is bounded as:

E[R
n

]  (2 + 1/�)"+ c�
p

n/kmin{0.5/C,1}�2

+ 2�.

Corollary 2. For the choice k = n/ log3(n) and � = 1/
p
n, we have:

E[R
n

] = O
⇣
log

2

(n)p
n

⌘
.
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This result shows that, surprisingly,
STOSOO can achieve the same rate
˜O(n�1/2

), up to a logarithmic factor, as
the HOO or Stochastic DOO algorithms
run with the best possible metric, al-
though STOSOO does not require the
knowledge of it. STOSOO (diamonds)
vs. Stochastic DOO with `

1

(circles) and
`
2

(squares) on f
1

.

THE IMPORTANT CASE d = 0
Example 1: Functions f defined on [0, 1]D that are locally equiv-
alent to a polynomial of degree ↵ around their maximum, i.e.,
f(x) � f(x⇤

) = ⇥(kx � x⇤k↵) for some ↵ > 0, where k · k is any
norm. The choice of semi-metric `(x, y) = kx � yk↵ implies that
the near-optimality dimension d = 0. This covers already a large
class of functions.

Example 2: More generally, we consider a finite dimensional and
bounded space X , (e.g., Euclidean space [0, 1]D) with a finite dou-
bling constant. Let a function in such space have upper- and lower
envelope around x⇤ of the same order, i.e., there exists constants
c 2 (0, 1), and ⌘ > 0, such that for all x 2 X :

min(⌘, c`(x, x⇤
))  f(x⇤

)� f(x)  `(x, x⇤
). (1)

f(x⇤) f(x⇤)� c`(x, x⇤)

f(x⇤)� `(x, x⇤)

f(x⇤)� ⌘

x

⇤

Any function satisfying (1) lies in the gray area and possesses a
lower- and upper-envelopes that are of same order around x⇤.

Example of a function with different order in the upper and lower
envelopes, when `(x, y) = |x� y|↵:

f(x) = 1�
p
x+ (�x2

+

p
x) · (sin(1/x2

) + 1)/2

The lower-envelope behaves like a square root whereas the upper
one is quadratic. The maximum number of `-balls with radius "
that can pack X

"

(i.e., Euclidean balls with radius "1/↵) is at most
of order "1/2/"1/↵  "�3/2, since ↵  1/2 in order to satisfy the
assumption on f . We deduce that there is no semi-metric of the
form |x� y|↵ for which d < 3/2.

EXPERIMENTS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Left: Two-sine product function f
1

(x) = 1

2

(sin(13x) · sin(27x)) + 0.5.
Right: Garland function: f

2

(x) = 4x(1�x)·( 3
4

+

1

4

(1�
p

| sin(60x)|)).
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Code at: HTTPS://SEQUEL.LILLE.INRIA.FR/SOFTWARE/STOSOO



PARTITIONING: 1D
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STOCHASTIC SIMULTANEOUS
OPTIMISTIC OPTIMIZATION

MICHAL.VALKO@INRIA.FR, A.CARPENTIER@STATSLAB.CAM.AC.UK, AND RÉMI.MUNOS@INRIA.FR

SETTING
STOSOO is a global function maximizer:

• Goal: Maximize f : X ! IR given a budget of n evaluations.

• Challenges: f is stochastic and has unknown smoothness

• Protocol: At round t, select state x
t

, observe r
t

such that

E[r
t

|x
t

] = f(x
t

).

After n rounds, return a state x(n).

• Loss: R
n

= sup

x2X f(x)� f(x(n))

STOSOO operates on a given hierarchical partitioning of X :

• For any h, X is partitioned in Kh cells (X
h,i

)

0iK

h�1

.

• K-ary tree T1 where depth h = 0 is the whole X .

h=0

h=2

h=1

• STOSOO adaptively creates finer and finer partitions of X .

• x
h,i

2 X
h,i

is a specific state per cell where f is evaluated

COMPARISON

deterministic
function deterministic stochastic

known
smoothness DOO Zooming or HOO

unknown
smoothness DIRECT or SOO STOSOO

Hierarchical optimistic optimization algorithms

ASSUMPTIONS
There exists a semi-metric ` on X (triangle inequality not required):

A1 Local smoothness of f : For all x 2 X :

f(x⇤
)� f(x)  `(x, x⇤

).

“f does not decrease too fast around x⇤”

x

⇤ X

f (x⇤) f

f(x⇤)� `(x, x⇤)

A2 Bounded diameters and well-shaped cells: There ex-
ists a decreasing sequence w(h) > 0, such that for any
depth h � 0 and for any cell X

h,i

of depth h, we have
sup

x2Xh,i
`(x

h,i

, x)  w(h). Moreover, there exists ⌫ > 0 such
that for any depth h � 0, any cell X

h,i

contains a `-ball of ra-
dius ⌫w(h) centered in x

h,i

.

MEASURE OF COMPLEXITY
For any " > 0, write the set of "-optimal states:

X
"

def

= {x 2 X , f(x) � f⇤ � ✏}

Definition 1 (near-optimality dimension). Smallest constant d such

that there exists C > 0, for all " > 0, the packing number of X
"

with `-
balls of radius ⌫✏ is less than C"�d

.

Illustration:

f(x⇤
)� f(x) = ⇥(||x⇤ � x||)

ε

ε

`(x, y) = ||x� y|| =) d = 0

f(x⇤
)� f(x) = ⇥(||x⇤ � x||2)

ε

ε

`(x, y) = ||x�y|| =) d = D/2
`(x, y) = ||x� y||2 =) d = 0

STOSOO ALGORITHM

Parameters: number of function evaluations n, maximum num-
ber of evaluations per node k > 0, maximum depth h

max

, and
� > 0.
Initialization:

T  {�[0, 0]} {root node}
t 0 {number of evaluations}
m 0 {number of leaf expansions}

while t  n do
b
max

 �1
for h = 0 to min(depth(T ), h

max

) do
if t  n then

For each leaf �[h, j] 2 L, compute its b-value:
b
h,j

(t) = µ̂
h,j

(t) +
p
log(nk/�)/(2T

h,j

(t))
Among leaves �[h, j] 2 L

t

at depth h, select

�[h, i] 2 argmax

�[h,j]2L
b
h,j

(t)

if b
h,i

(t) � b
max

then
if T

h,i

(t) < k then
Evaluate (sample) state x

t

= x
h,i

.
Collect reward r

t

(s.t. E[r
t

|x
t

] = f(x
t

)).
t t+ 1

else {i.e. T
h,i

(t) � k, expand this node}
Add the K children of �[h, i] to T
b
max

 b
h,i

(t)
end if

end if
end if

end for
end while
Output: The representative point with the highest µ̂

h,j

(n)
among the deepest expanded nodes:

x(n) = argmax

xh,j

µ̂
h,j

(n) s.t. h = depth(T \ L).

How it works?

• STOSOO iteratively traverses and builds a tree over X

• at each traversal it selects several nodes simultaneously

• the selection is optimistic, based on confidence bounds

• selected nodes are either sampled or expanded

• sample the node k times for a confident estimate of f(x
h,i

)

• returns the deepest expanded node

ANALYSIS
Main result:

Theorem 1. Let d be the ⌫/3-near-optimality dimension and C be

the corresponding constant. If the assumptions hold, then the loss of

STOSOO run with parameters k, h
max

, and � > 0, after n iterations is

bounded, with probability 1� �, as:

R
n

 2"+ w (min (h(n)� 1, h
"

, h
max

))

where " =
p

log(nk/�)/(2k) and h(n) is the smallest h 2 N, such that:

C(k + 1)h
max

hX

l=0

(w (l) + 2")
�d � n,

and h
"

is defined as:

h
"

= argmin{h 2 N : w(h+ 1) < "}.

Exponential diameters and d = 0:

Corollary 1. Assume that the diameters of the cells decrease exponen-

tially fast, i.e., w(h) = c�h

for some c > 0 and � < 1. Assume that the

⌫/3-near-optimality dimension is d = 0 and let C be the corresponding

constant. Then the expected loss of STOSOO run with parameters k,

h
max

=

p
n/k, and � > 0, is bounded as:

E[R
n

]  (2 + 1/�)"+ c�
p

n/kmin{0.5/C,1}�2

+ 2�.

Corollary 2. For the choice k = n/ log3(n) and � = 1/
p
n, we have:

E[R
n

] = O
⇣
log

2

(n)p
n

⌘
.
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This result shows that, surprisingly,
STOSOO can achieve the same rate
˜O(n�1/2

), up to a logarithmic factor, as
the HOO or Stochastic DOO algorithms
run with the best possible metric, al-
though STOSOO does not require the
knowledge of it. STOSOO (diamonds)
vs. Stochastic DOO with `

1

(circles) and
`
2

(squares) on f
1

.

THE IMPORTANT CASE d = 0
Example 1: Functions f defined on [0, 1]D that are locally equiv-
alent to a polynomial of degree ↵ around their maximum, i.e.,
f(x) � f(x⇤

) = ⇥(kx � x⇤k↵) for some ↵ > 0, where k · k is any
norm. The choice of semi-metric `(x, y) = kx � yk↵ implies that
the near-optimality dimension d = 0. This covers already a large
class of functions.

Example 2: More generally, we consider a finite dimensional and
bounded space X , (e.g., Euclidean space [0, 1]D) with a finite dou-
bling constant. Let a function in such space have upper- and lower
envelope around x⇤ of the same order, i.e., there exists constants
c 2 (0, 1), and ⌘ > 0, such that for all x 2 X :

min(⌘, c`(x, x⇤
))  f(x⇤

)� f(x)  `(x, x⇤
). (1)

f(x⇤) f(x⇤)� c`(x, x⇤)

f(x⇤)� `(x, x⇤)

f(x⇤)� ⌘

x

⇤

Any function satisfying (1) lies in the gray area and possesses a
lower- and upper-envelopes that are of same order around x⇤.

Example of a function with different order in the upper and lower
envelopes, when `(x, y) = |x� y|↵:

f(x) = 1�
p
x+ (�x2

+

p
x) · (sin(1/x2

) + 1)/2

The lower-envelope behaves like a square root whereas the upper
one is quadratic. The maximum number of `-balls with radius "
that can pack X

"

(i.e., Euclidean balls with radius "1/↵) is at most
of order "1/2/"1/↵  "�3/2, since ↵  1/2 in order to satisfy the
assumption on f . We deduce that there is no semi-metric of the
form |x� y|↵ for which d < 3/2.

EXPERIMENTS
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(sin(13x) · sin(27x)) + 0.5.
Right: Garland function: f
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(x) = 4x(1�x)·( 3
4

+

1

4

(1�
p

| sin(60x)|)).
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Code at: HTTPS://SEQUEL.LILLE.INRIA.FR/SOFTWARE/STOSOO



HOW IT WORKS?
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The StoSOO Algorithm

How it works?

h=0

h=2

h=1

h=3

Partition:

I StoSOO iteratively traverses and builds a tree over X

Michal Valko – Stochastic Simultaneous Optimistic Optimization SequeL - 9/24
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STOCHASTIC SIMULTANEOUS
OPTIMISTIC OPTIMIZATION

MICHAL.VALKO@INRIA.FR, A.CARPENTIER@STATSLAB.CAM.AC.UK, AND RÉMI.MUNOS@INRIA.FR

SETTING
STOSOO is a global function maximizer:

• Goal: Maximize f : X ! IR given a budget of n evaluations.

• Challenges: f is stochastic and has unknown smoothness

• Protocol: At round t, select state x
t

, observe r
t

such that

E[r
t

|x
t

] = f(x
t

).

After n rounds, return a state x(n).

• Loss: R
n

= sup

x2X f(x)� f(x(n))

STOSOO operates on a given hierarchical partitioning of X :

• For any h, X is partitioned in Kh cells (X
h,i

)

0iK

h�1

.

• K-ary tree T1 where depth h = 0 is the whole X .

h=0

h=2

h=1

• STOSOO adaptively creates finer and finer partitions of X .

• x
h,i

2 X
h,i

is a specific state per cell where f is evaluated

COMPARISON

deterministic
function deterministic stochastic

known
smoothness DOO Zooming or HOO

unknown
smoothness DIRECT or SOO STOSOO

Hierarchical optimistic optimization algorithms

ASSUMPTIONS
There exists a semi-metric ` on X (triangle inequality not required):

A1 Local smoothness of f : For all x 2 X :

f(x⇤
)� f(x)  `(x, x⇤

).

“f does not decrease too fast around x⇤”

x

⇤ X

f (x⇤) f

f(x⇤)� `(x, x⇤)

A2 Bounded diameters and well-shaped cells: There ex-
ists a decreasing sequence w(h) > 0, such that for any
depth h � 0 and for any cell X

h,i

of depth h, we have
sup

x2Xh,i
`(x

h,i

, x)  w(h). Moreover, there exists ⌫ > 0 such
that for any depth h � 0, any cell X

h,i

contains a `-ball of ra-
dius ⌫w(h) centered in x

h,i

.

MEASURE OF COMPLEXITY
For any " > 0, write the set of "-optimal states:

X
"

def

= {x 2 X , f(x) � f⇤ � ✏}

Definition 1 (near-optimality dimension). Smallest constant d such

that there exists C > 0, for all " > 0, the packing number of X
"

with `-
balls of radius ⌫✏ is less than C"�d

.

Illustration:

f(x⇤
)� f(x) = ⇥(||x⇤ � x||)

ε

ε

`(x, y) = ||x� y|| =) d = 0

f(x⇤
)� f(x) = ⇥(||x⇤ � x||2)

ε

ε

`(x, y) = ||x�y|| =) d = D/2
`(x, y) = ||x� y||2 =) d = 0

STOSOO ALGORITHM

Parameters: number of function evaluations n, maximum num-
ber of evaluations per node k > 0, maximum depth h

max

, and
� > 0.
Initialization:

T  {�[0, 0]} {root node}
t 0 {number of evaluations}
m 0 {number of leaf expansions}

while t  n do
b
max

 �1
for h = 0 to min(depth(T ), h

max

) do
if t  n then

For each leaf �[h, j] 2 L, compute its b-value:
b
h,j

(t) = µ̂
h,j

(t) +
p
log(nk/�)/(2T

h,j

(t))
Among leaves �[h, j] 2 L

t

at depth h, select

�[h, i] 2 argmax

�[h,j]2L
b
h,j

(t)

if b
h,i

(t) � b
max

then
if T

h,i

(t) < k then
Evaluate (sample) state x

t

= x
h,i

.
Collect reward r

t

(s.t. E[r
t

|x
t

] = f(x
t

)).
t t+ 1

else {i.e. T
h,i

(t) � k, expand this node}
Add the K children of �[h, i] to T
b
max

 b
h,i

(t)
end if

end if
end if

end for
end while
Output: The representative point with the highest µ̂

h,j

(n)
among the deepest expanded nodes:

x(n) = argmax

xh,j

µ̂
h,j

(n) s.t. h = depth(T \ L).

How it works?

• STOSOO iteratively traverses and builds a tree over X

• at each traversal it selects several nodes simultaneously

• the selection is optimistic, based on confidence bounds

• selected nodes are either sampled or expanded

• sample the node k times for a confident estimate of f(x
h,i

)

• returns the deepest expanded node

ANALYSIS
Main result:

Theorem 1. Let d be the ⌫/3-near-optimality dimension and C be

the corresponding constant. If the assumptions hold, then the loss of

STOSOO run with parameters k, h
max

, and � > 0, after n iterations is

bounded, with probability 1� �, as:

R
n

 2"+ w (min (h(n)� 1, h
"

, h
max

))

where " =
p

log(nk/�)/(2k) and h(n) is the smallest h 2 N, such that:

C(k + 1)h
max

hX

l=0

(w (l) + 2")
�d � n,

and h
"

is defined as:

h
"

= argmin{h 2 N : w(h+ 1) < "}.

Exponential diameters and d = 0:

Corollary 1. Assume that the diameters of the cells decrease exponen-

tially fast, i.e., w(h) = c�h

for some c > 0 and � < 1. Assume that the

⌫/3-near-optimality dimension is d = 0 and let C be the corresponding

constant. Then the expected loss of STOSOO run with parameters k,

h
max

=

p
n/k, and � > 0, is bounded as:

E[R
n

]  (2 + 1/�)"+ c�
p

n/kmin{0.5/C,1}�2

+ 2�.

Corollary 2. For the choice k = n/ log3(n) and � = 1/
p
n, we have:

E[R
n

] = O
⇣
log

2

(n)p
n

⌘
.
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This result shows that, surprisingly,
STOSOO can achieve the same rate
˜O(n�1/2

), up to a logarithmic factor, as
the HOO or Stochastic DOO algorithms
run with the best possible metric, al-
though STOSOO does not require the
knowledge of it. STOSOO (diamonds)
vs. Stochastic DOO with `

1

(circles) and
`
2

(squares) on f
1

.

THE IMPORTANT CASE d = 0
Example 1: Functions f defined on [0, 1]D that are locally equiv-
alent to a polynomial of degree ↵ around their maximum, i.e.,
f(x) � f(x⇤

) = ⇥(kx � x⇤k↵) for some ↵ > 0, where k · k is any
norm. The choice of semi-metric `(x, y) = kx � yk↵ implies that
the near-optimality dimension d = 0. This covers already a large
class of functions.

Example 2: More generally, we consider a finite dimensional and
bounded space X , (e.g., Euclidean space [0, 1]D) with a finite dou-
bling constant. Let a function in such space have upper- and lower
envelope around x⇤ of the same order, i.e., there exists constants
c 2 (0, 1), and ⌘ > 0, such that for all x 2 X :

min(⌘, c`(x, x⇤
))  f(x⇤

)� f(x)  `(x, x⇤
). (1)

f(x⇤) f(x⇤)� c`(x, x⇤)

f(x⇤)� `(x, x⇤)

f(x⇤)� ⌘

x

⇤

Any function satisfying (1) lies in the gray area and possesses a
lower- and upper-envelopes that are of same order around x⇤.

Example of a function with different order in the upper and lower
envelopes, when `(x, y) = |x� y|↵:

f(x) = 1�
p
x+ (�x2

+

p
x) · (sin(1/x2

) + 1)/2

The lower-envelope behaves like a square root whereas the upper
one is quadratic. The maximum number of `-balls with radius "
that can pack X

"

(i.e., Euclidean balls with radius "1/↵) is at most
of order "1/2/"1/↵  "�3/2, since ↵  1/2 in order to satisfy the
assumption on f . We deduce that there is no semi-metric of the
form |x� y|↵ for which d < 3/2.
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Left: Two-sine product function f
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(x) = 1
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(sin(13x) · sin(27x)) + 0.5.
Right: Garland function: f

2

(x) = 4x(1�x)·( 3
4

+

1

4

(1�
p

| sin(60x)|)).
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Code at: HTTPS://SEQUEL.LILLE.INRIA.FR/SOFTWARE/STOSOO

STOCHASTIC SIMULTANEOUS
OPTIMISTIC OPTIMIZATION

MICHAL.VALKO@INRIA.FR, A.CARPENTIER@STATSLAB.CAM.AC.UK, AND RÉMI.MUNOS@INRIA.FR

SETTING
STOSOO is a global function maximizer:

• Goal: Maximize f : X ! IR given a budget of n evaluations.

• Challenges: f is stochastic and has unknown smoothness

• Protocol: At round t, select state x
t

, observe r
t

such that

E[r
t

|x
t

] = f(x
t

).

After n rounds, return a state x(n).

• Loss: R
n

= sup

x2X f(x)� f(x(n))

STOSOO operates on a given hierarchical partitioning of X :

• For any h, X is partitioned in Kh cells (X
h,i

)

0iK

h�1

.

• K-ary tree T1 where depth h = 0 is the whole X .

h=0

h=2

h=1

• STOSOO adaptively creates finer and finer partitions of X .

• x
h,i

2 X
h,i

is a specific state per cell where f is evaluated

COMPARISON

deterministic
function deterministic stochastic

known
smoothness DOO Zooming or HOO

unknown
smoothness DIRECT or SOO STOSOO

Hierarchical optimistic optimization algorithms

ASSUMPTIONS
There exists a semi-metric ` on X (triangle inequality not required):

A1 Local smoothness of f : For all x 2 X :

f(x⇤
)� f(x)  `(x, x⇤

).

“f does not decrease too fast around x⇤”

x

⇤ X

f (x⇤) f

f(x⇤)� `(x, x⇤)

A2 Bounded diameters and well-shaped cells: There ex-
ists a decreasing sequence w(h) > 0, such that for any
depth h � 0 and for any cell X

h,i

of depth h, we have
sup

x2Xh,i
`(x

h,i

, x)  w(h). Moreover, there exists ⌫ > 0 such
that for any depth h � 0, any cell X

h,i

contains a `-ball of ra-
dius ⌫w(h) centered in x

h,i

.

MEASURE OF COMPLEXITY
For any " > 0, write the set of "-optimal states:

X
"

def

= {x 2 X , f(x) � f⇤ � ✏}

Definition 1 (near-optimality dimension). Smallest constant d such

that there exists C > 0, for all " > 0, the packing number of X
"

with `-
balls of radius ⌫✏ is less than C"�d

.

Illustration:

f(x⇤
)� f(x) = ⇥(||x⇤ � x||)

ε

ε

`(x, y) = ||x� y|| =) d = 0

f(x⇤
)� f(x) = ⇥(||x⇤ � x||2)

ε

ε

`(x, y) = ||x�y|| =) d = D/2
`(x, y) = ||x� y||2 =) d = 0

STOSOO ALGORITHM

Parameters: number of function evaluations n, maximum num-
ber of evaluations per node k > 0, maximum depth h

max

, and
� > 0.
Initialization:

T  {�[0, 0]} {root node}
t 0 {number of evaluations}
m 0 {number of leaf expansions}

while t  n do
b
max

 �1
for h = 0 to min(depth(T ), h

max

) do
if t  n then

For each leaf �[h, j] 2 L, compute its b-value:
b
h,j

(t) = µ̂
h,j

(t) +
p
log(nk/�)/(2T

h,j

(t))
Among leaves �[h, j] 2 L

t

at depth h, select

�[h, i] 2 argmax

�[h,j]2L
b
h,j

(t)

if b
h,i

(t) � b
max

then
if T

h,i

(t) < k then
Evaluate (sample) state x

t

= x
h,i

.
Collect reward r

t

(s.t. E[r
t

|x
t

] = f(x
t

)).
t t+ 1

else {i.e. T
h,i

(t) � k, expand this node}
Add the K children of �[h, i] to T
b
max

 b
h,i

(t)
end if

end if
end if

end for
end while
Output: The representative point with the highest µ̂

h,j

(n)
among the deepest expanded nodes:

x(n) = argmax

xh,j

µ̂
h,j

(n) s.t. h = depth(T \ L).

How it works?

• STOSOO iteratively traverses and builds a tree over X

• at each traversal it selects several nodes simultaneously

• the selection is optimistic, based on confidence bounds

• selected nodes are either sampled or expanded

• sample the node k times for a confident estimate of f(x
h,i

)

• returns the deepest expanded node

ANALYSIS
Main result:

Theorem 1. Let d be the ⌫/3-near-optimality dimension and C be

the corresponding constant. If the assumptions hold, then the loss of

STOSOO run with parameters k, h
max

, and � > 0, after n iterations is

bounded, with probability 1� �, as:

R
n

 2"+ w (min (h(n)� 1, h
"

, h
max

))

where " =
p

log(nk/�)/(2k) and h(n) is the smallest h 2 N, such that:

C(k + 1)h
max

hX

l=0

(w (l) + 2")
�d � n,

and h
"

is defined as:

h
"

= argmin{h 2 N : w(h+ 1) < "}.

Exponential diameters and d = 0:

Corollary 1. Assume that the diameters of the cells decrease exponen-

tially fast, i.e., w(h) = c�h

for some c > 0 and � < 1. Assume that the

⌫/3-near-optimality dimension is d = 0 and let C be the corresponding

constant. Then the expected loss of STOSOO run with parameters k,

h
max

=

p
n/k, and � > 0, is bounded as:

E[R
n

]  (2 + 1/�)"+ c�
p

n/kmin{0.5/C,1}�2

+ 2�.

Corollary 2. For the choice k = n/ log3(n) and � = 1/
p
n, we have:

E[R
n

] = O
⇣
log

2

(n)p
n

⌘
.
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This result shows that, surprisingly,
STOSOO can achieve the same rate
˜O(n�1/2

), up to a logarithmic factor, as
the HOO or Stochastic DOO algorithms
run with the best possible metric, al-
though STOSOO does not require the
knowledge of it. STOSOO (diamonds)
vs. Stochastic DOO with `

1

(circles) and
`
2

(squares) on f
1

.

THE IMPORTANT CASE d = 0
Example 1: Functions f defined on [0, 1]D that are locally equiv-
alent to a polynomial of degree ↵ around their maximum, i.e.,
f(x) � f(x⇤

) = ⇥(kx � x⇤k↵) for some ↵ > 0, where k · k is any
norm. The choice of semi-metric `(x, y) = kx � yk↵ implies that
the near-optimality dimension d = 0. This covers already a large
class of functions.

Example 2: More generally, we consider a finite dimensional and
bounded space X , (e.g., Euclidean space [0, 1]D) with a finite dou-
bling constant. Let a function in such space have upper- and lower
envelope around x⇤ of the same order, i.e., there exists constants
c 2 (0, 1), and ⌘ > 0, such that for all x 2 X :

min(⌘, c`(x, x⇤
))  f(x⇤

)� f(x)  `(x, x⇤
). (1)

f(x⇤) f(x⇤)� c`(x, x⇤)

f(x⇤)� `(x, x⇤)

f(x⇤)� ⌘

x

⇤

Any function satisfying (1) lies in the gray area and possesses a
lower- and upper-envelopes that are of same order around x⇤.

Example of a function with different order in the upper and lower
envelopes, when `(x, y) = |x� y|↵:

f(x) = 1�
p
x+ (�x2

+

p
x) · (sin(1/x2

) + 1)/2

The lower-envelope behaves like a square root whereas the upper
one is quadratic. The maximum number of `-balls with radius "
that can pack X

"

(i.e., Euclidean balls with radius "1/↵) is at most
of order "1/2/"1/↵  "�3/2, since ↵  1/2 in order to satisfy the
assumption on f . We deduce that there is no semi-metric of the
form |x� y|↵ for which d < 3/2.
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(x) = 1

2

(sin(13x) · sin(27x)) + 0.5.
Right: Garland function: f

2

(x) = 4x(1�x)·( 3
4

+

1

4

(1�
p

| sin(60x)|)).

  10   50  100  500 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

re
gr

et
 (l

os
s)

number of function evaluations
  10   50  100  500 1000

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

re
gr

et
 (l

os
s)

number of function evaluations
  10   50  100  500 1000

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

re
gr

et
 (l

os
s)

number of function evaluations

STOSOO’s on f
1

. Left: Noised with N
T

(0, 0.01). Middle: Noised
with N

T

(0, 0.1). Right: Noised with N
T

(0, 1).

 100  200  300  400  500  600  700  800  900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

re
gr

et
 (l

os
s)

number of function evaluations
 100  200  300  400  500  600  700  800  900 1000

0

0.05

0.1

0.15

0.2

0.25

0.3

re
gr

et
 (l

os
s)

number of function evaluations

STOSOO’s performance for the garland function. Left noised with
N

T

(0, 0.01). Right: Noised with N
T

(0, 0.1).

Code at: HTTPS://SEQUEL.LILLE.INRIA.FR/SOFTWARE/STOSOO
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Illustration

Example in 1d

f(x )t

xt

f

f *

Lipschitz property → the evaluation of f at xt provides a first
upper-bound on f .

Lipschitz property → the evaluation of f at xt provides  
a first upper-bound on f
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New point → refined upper-bound on f

. . . . . .
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Introduction to bandits

. . . . . .
MCTS
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Optimistic optimization

. . . . . . . . . . . . . . . . . . .
Unknown smoothness

. . . . . . . . . . . . . . . . . . .
Optimistic Planning

Illustration

Example in 1d (continued)

New point → refined upper-bound on f .
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Question: where should one sample the next point?  
Answer: select the point with highest upper bound!

. . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction to bandits

. . . . . .
MCTS

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Optimistic optimization

. . . . . . . . . . . . . . . . . . .
Unknown smoothness

. . . . . . . . . . . . . . . . . . .
Optimistic Planning

Illustration

Example in 1d (continued)

Question: where should one sample the next point?
Answer: select the point with highest upper bound!
“Optimism in the face of (partial observation) uncertainty”
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Bartlett, Gabillon, Valko

Stochastic feedback The evaluations are perturbed by a noise of range b 2 R
+

1: At any
round, "

t

is a random variable, assumed to be independent of the noise at previous
rounds,

E [y
t

|x
t

] = f(x
t

) and |y
t

� f(x
t

)|  b. (1)

The objective of the learner is to return an element x(n) 2 X with largest possible value
f (x(n)) after the n evaluations. x(n) can be di↵erent from the last evaluated element x

n

.
More precisely, the performance of the algorithm is the loss (or simple regret),

r

n

= sup
x2X

f (x) � f (x(n)) .

We consider the case that the evaluation is costly. Therefore, we minimize r

n

as a function
of n. We assume that there exists at least one point x? 2 X such that f(x?) = sup

x2X f(x).

Prior work Among the large work on optimization, we focus on algorithms that perform
well under minimal assumptions as well as minimal knowledge about the function. Relying
on minimal assumptions means that we target functions that are particularly hard to opti-
mize. For instance, we may not have access to the gradients of the function, gradients might
not be well defined, or the function may not be continuous. While some prior works assume
a global smoothness of the function (Pintér, 1996; Strongin and Sergeyev, 2013; Hansen and
Walster, 2003; Kearfott, 2013), another line of research assumes only a weak/local smooth-
ness around one global maximum (Kleinberg et al., 2008; Bubeck et al., 2011a). However,
within this latter group, some algorithms require the knowledge of the local smoothness
such as HOO (Bubeck et al., 2011a), Zooming (Kleinberg et al., 2008), or DOO (Munos, 2011).
Among the works relying on an unknown local smoothness, SOO (Munos, 2011; Kawaguchi
et al., 2016) represents the state-of-the-art for the deterministic feedback. For the stochastic
feedback, StoSOO (Valko et al., 2013) extends SOO for a limited class of functions. POO (Grill
et al., 2015) provides more general results. We classify the most related algorithms in the
following table. Note that, for more specific assumptions on the smoothness, some works

smoothness deterministic stochastic
known DOO Zooming, HOO
unknown DiRect, SOO, SequOOL StoSOO, POO, StroquOOL

study optimization without the knowledge of smoothness: DiRect (Jones et al., 1993) and
others (Slivkins, 2011; Bubeck et al., 2011b; Malherbe and Vayatis, 2017) tackle Lipschitz
optimization.

Finally, there are algorithms that instead of simple regret, optimize cumulative regret,
for example, HOO (Bubeck et al., 2011a) or HCT (Azar et al., 2014). However, none of
them adapt to the unknown smoothness and compared to them, the algorithms for simple
regret that are able to do that, such as POO or our StroquOOL, need to explore significantly
more, which negatively impacts their cumulative regret (Grill et al., 2015; Locatelli and
Carpentier, 2018).

1. Alternatively, we can turn the boundedness assumption into a sub-Gaussianity assumption equipped
with a variance parameter equivalent to our range b.

2

a ZOO of possibilities

very few guarantee a global optimality

What is the right characterization of the problem?

Which functions are difficult to optimize?

minimax-optimal sample complexity
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VIDEO EXAMPLES FOR  THE CONTINUOUS FUNCTION OPTIMIZATION 
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HOO

StoSOO

SOO

POO
HCT

SequooL

StroquOOL

DOO

weak Lipschitz local Lipschitz only

adapted (semi-metric) no metric needed

2010

2011

2011

2013

2014

2015

2019

2019

needs scale of the noise as an input adapts to noise

adapts to smoothness



WHAT DOES OUR ALGORITHM BRING?
Current state-of-the-art needs noise scale as input 

If the noise is actually smaller, we find the optimum slower than we could 

if the input happens to be deterministic, we miss learning exponentially fast 

Current state-of-the-art is are complicated META-ALGORITHM 

explicitly running several algorithms that know the smoothness 

VERY complicated analysis, high computational complexity
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STOCHASTIC SIMULTANEOUS
OPTIMISTIC OPTIMIZATION

MICHAL.VALKO@INRIA.FR, A.CARPENTIER@STATSLAB.CAM.AC.UK, AND RÉMI.MUNOS@INRIA.FR

SETTING
STOSOO is a global function maximizer:

• Goal: Maximize f : X ! IR given a budget of n evaluations.

• Challenges: f is stochastic and has unknown smoothness

• Protocol: At round t, select state x
t

, observe r
t

such that

E[r
t

|x
t

] = f(x
t

).

After n rounds, return a state x(n).

• Loss: R
n

= sup

x2X f(x)� f(x(n))

STOSOO operates on a given hierarchical partitioning of X :

• For any h, X is partitioned in Kh cells (X
h,i

)

0iK

h�1

.

• K-ary tree T1 where depth h = 0 is the whole X .

h=0

h=2

h=1

• STOSOO adaptively creates finer and finer partitions of X .

• x
h,i

2 X
h,i

is a specific state per cell where f is evaluated

COMPARISON

deterministic
function deterministic stochastic

known
smoothness DOO Zooming or HOO

unknown
smoothness DIRECT or SOO STOSOO

Hierarchical optimistic optimization algorithms

ASSUMPTIONS
There exists a semi-metric ` on X (triangle inequality not required):

A1 Local smoothness of f : For all x 2 X :

f(x⇤
)� f(x)  `(x, x⇤

).

“f does not decrease too fast around x⇤”

x

⇤ X

f (x⇤) f

f(x⇤)� `(x, x⇤)

A2 Bounded diameters and well-shaped cells: There ex-
ists a decreasing sequence w(h) > 0, such that for any
depth h � 0 and for any cell X

h,i

of depth h, we have
sup

x2Xh,i
`(x

h,i

, x)  w(h). Moreover, there exists ⌫ > 0 such
that for any depth h � 0, any cell X

h,i

contains a `-ball of ra-
dius ⌫w(h) centered in x

h,i

.

MEASURE OF COMPLEXITY
For any " > 0, write the set of "-optimal states:

X
"

def

= {x 2 X , f(x) � f⇤ � ✏}

Definition 1 (near-optimality dimension). Smallest constant d such

that there exists C > 0, for all " > 0, the packing number of X
"

with `-
balls of radius ⌫✏ is less than C"�d

.

Illustration:

f(x⇤
)� f(x) = ⇥(||x⇤ � x||)

ε

ε

`(x, y) = ||x� y|| =) d = 0

f(x⇤
)� f(x) = ⇥(||x⇤ � x||2)

ε

ε

`(x, y) = ||x�y|| =) d = D/2
`(x, y) = ||x� y||2 =) d = 0

STOSOO ALGORITHM

Parameters: number of function evaluations n, maximum num-
ber of evaluations per node k > 0, maximum depth h

max

, and
� > 0.
Initialization:

T  {�[0, 0]} {root node}
t 0 {number of evaluations}
m 0 {number of leaf expansions}

while t  n do
b
max

 �1
for h = 0 to min(depth(T ), h

max

) do
if t  n then

For each leaf �[h, j] 2 L, compute its b-value:
b
h,j

(t) = µ̂
h,j

(t) +
p
log(nk/�)/(2T

h,j

(t))
Among leaves �[h, j] 2 L

t

at depth h, select

�[h, i] 2 argmax

�[h,j]2L
b
h,j

(t)

if b
h,i

(t) � b
max

then
if T

h,i

(t) < k then
Evaluate (sample) state x

t

= x
h,i

.
Collect reward r

t

(s.t. E[r
t

|x
t

] = f(x
t

)).
t t+ 1

else {i.e. T
h,i

(t) � k, expand this node}
Add the K children of �[h, i] to T
b
max

 b
h,i

(t)
end if

end if
end if

end for
end while
Output: The representative point with the highest µ̂

h,j

(n)
among the deepest expanded nodes:

x(n) = argmax

xh,j

µ̂
h,j

(n) s.t. h = depth(T \ L).

How it works?

• STOSOO iteratively traverses and builds a tree over X

• at each traversal it selects several nodes simultaneously

• the selection is optimistic, based on confidence bounds

• selected nodes are either sampled or expanded

• sample the node k times for a confident estimate of f(x
h,i

)

• returns the deepest expanded node

ANALYSIS
Main result:

Theorem 1. Let d be the ⌫/3-near-optimality dimension and C be

the corresponding constant. If the assumptions hold, then the loss of

STOSOO run with parameters k, h
max

, and � > 0, after n iterations is

bounded, with probability 1� �, as:

R
n

 2"+ w (min (h(n)� 1, h
"

, h
max

))

where " =
p

log(nk/�)/(2k) and h(n) is the smallest h 2 N, such that:

C(k + 1)h
max

hX

l=0

(w (l) + 2")
�d � n,

and h
"

is defined as:

h
"

= argmin{h 2 N : w(h+ 1) < "}.

Exponential diameters and d = 0:

Corollary 1. Assume that the diameters of the cells decrease exponen-

tially fast, i.e., w(h) = c�h

for some c > 0 and � < 1. Assume that the

⌫/3-near-optimality dimension is d = 0 and let C be the corresponding

constant. Then the expected loss of STOSOO run with parameters k,

h
max

=

p
n/k, and � > 0, is bounded as:

E[R
n

]  (2 + 1/�)"+ c�
p

n/kmin{0.5/C,1}�2

+ 2�.

Corollary 2. For the choice k = n/ log3(n) and � = 1/
p
n, we have:

E[R
n

] = O
⇣
log

2

(n)p
n

⌘
.
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This result shows that, surprisingly,
STOSOO can achieve the same rate
˜O(n�1/2

), up to a logarithmic factor, as
the HOO or Stochastic DOO algorithms
run with the best possible metric, al-
though STOSOO does not require the
knowledge of it. STOSOO (diamonds)
vs. Stochastic DOO with `

1

(circles) and
`
2

(squares) on f
1

.

THE IMPORTANT CASE d = 0
Example 1: Functions f defined on [0, 1]D that are locally equiv-
alent to a polynomial of degree ↵ around their maximum, i.e.,
f(x) � f(x⇤

) = ⇥(kx � x⇤k↵) for some ↵ > 0, where k · k is any
norm. The choice of semi-metric `(x, y) = kx � yk↵ implies that
the near-optimality dimension d = 0. This covers already a large
class of functions.

Example 2: More generally, we consider a finite dimensional and
bounded space X , (e.g., Euclidean space [0, 1]D) with a finite dou-
bling constant. Let a function in such space have upper- and lower
envelope around x⇤ of the same order, i.e., there exists constants
c 2 (0, 1), and ⌘ > 0, such that for all x 2 X :

min(⌘, c`(x, x⇤
))  f(x⇤

)� f(x)  `(x, x⇤
). (1)

f(x⇤) f(x⇤)� c`(x, x⇤)

f(x⇤)� `(x, x⇤)

f(x⇤)� ⌘

x

⇤

Any function satisfying (1) lies in the gray area and possesses a
lower- and upper-envelopes that are of same order around x⇤.

Example of a function with different order in the upper and lower
envelopes, when `(x, y) = |x� y|↵:

f(x) = 1�
p
x+ (�x2

+

p
x) · (sin(1/x2

) + 1)/2

The lower-envelope behaves like a square root whereas the upper
one is quadratic. The maximum number of `-balls with radius "
that can pack X

"

(i.e., Euclidean balls with radius "1/↵) is at most
of order "1/2/"1/↵  "�3/2, since ↵  1/2 in order to satisfy the
assumption on f . We deduce that there is no semi-metric of the
form |x� y|↵ for which d < 3/2.

EXPERIMENTS
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Left: Two-sine product function f
1

(x) = 1

2

(sin(13x) · sin(27x)) + 0.5.
Right: Garland function: f

2

(x) = 4x(1�x)·( 3
4

+

1

4

(1�
p

| sin(60x)|)).
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Code at: HTTPS://SEQUEL.LILLE.INRIA.FR/SOFTWARE/STOSOO

What is the price to pay for  all this adaptivity and minimal assumptions?

hyper-parameter optimization!
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simple approach to optimization under a minimal smoothness assumption

assumption is minimal and already way weaker than global Lipschitzness. Second, this
leveraging was absent in the analysis for POO which additionally relies on the 40 pages proof
of HOO (see Shang et al., 2018, for a detailed discussion). Our proofs are succinct2 while
obtaining performance improvement (d = 0) and a new adaptation (b = 0). To obtain these,
in an original way, our theorems are now based on solving a transcendental equation with
the Lambert W function. For StroquOOL, a careful discrimination of the parameters of
the equation leads to optimal rates both in the deterministic and stochastic case.

Intriguingly, the amount of evaluations allocated to each depth h follows a Zipf law (Pow-
ers, 1998), that is, each depth level h is simply pulled inversely proportional to its depth
index h. This is a simple but not a straightforward idea. It provides a parameter-free
method to explore the depths without knowing the bound C on the number of optimal cells
per depth (N

h

= C / n/h when d = 0) and obtain a maximal optimal depth h

? of order
n/C. A Zipf law has been used by Audibert et al. (2010) and Abbasi-Yadkori et al. (2018)
in pure-exploration bandit problems but without any notion of depth in the search. In this
paper, we introduce the Zipf law to tree-search algorithms.

Another novelty is that of not using upper bounds in StroquOOL (unlike StoSOO, HCT, HOO,
POO), which results in the contribution of removing the need to know the noise amplitude.

2. Partition, tree, assumption, and near-optimality dimension

Partitioning The hierarchical partitioning P = {P
h,i

}
h,i

we consider is similar to the
ones introduced in prior work (Munos, 2011; Valko et al., 2013): For any depth h � 0 in the
tree representation, the set {P

h,i

}
1iIh of cells (or nodes) forms a partition of X , where

I

h

is the number of cells at depth h. At depth 0, the root of the tree, there is a single cell
P
0,1

= X . A cell P
h,i

of depth h is split into children subcells {P
h+1,j

}
j

of depth h+ 1. As
Grill et al. (2015), our work focuses on a notion of near-optimality dimension d that does
not directly relate the smoothness property of f to a specific metric ` but directly to the
hierarchical partitioning P. Indeed, an interesting fundamental question is to determine a
good characterization of the di�culty of the optimization for an algorithm that uses a given
hierarchical partitioning of the space X as its input (see Grill et al., 2015, for a detailed
discussion). Given a global maximum x

? of f , i?
h

denotes the index of the unique cell of
depth h containing x

? , i.e., such that x? 2 P
h,i

?
h
. We follow the work by Grill et al. (2015)

and state a single assumption on both the partitioning P and the function f .

Assumption 1 For any global optimum x

?, there exists ⌫ > 0 and ⇢ 2 (0, 1) such that
8h 2 N, 8x 2 P

h,i

?
h
, f(x) � f(x?) � ⌫⇢

h

.

Definition 1 For any ⌫ > 0 and ⇢ 2 (0, 1), the near-optimality dimension3

d(⌫, ⇢) of f
with respect to the partitioning P and with associated constant C, is

d(⌫, ⇢) , inf
n

d

0 2 R+ : 9C > 1, 8h � 0,N
h

(3⌫⇢h)  C⇢

�dh

o

,

where N
h

(") is the number of cells P
h,i

of depth h such that sup
x2Ph,i

f(x) � f(x?) � ".

2. The proof is even redundantly written twice for StroquOOL and SequOOL for completeness
3. Grill et al. (2015) define d(⌫, ⇢) with the constant 2 instead of 3. 3 eases the exposition of our results.
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OPTIMISTIC OPTIMIZATION

MICHAL.VALKO@INRIA.FR, A.CARPENTIER@STATSLAB.CAM.AC.UK, AND RÉMI.MUNOS@INRIA.FR

SETTING
STOSOO is a global function maximizer:

• Goal: Maximize f : X ! IR given a budget of n evaluations.

• Challenges: f is stochastic and has unknown smoothness

• Protocol: At round t, select state x
t

, observe r
t

such that

E[r
t

|x
t

] = f(x
t

).

After n rounds, return a state x(n).

• Loss: R
n

= sup

x2X f(x)� f(x(n))

STOSOO operates on a given hierarchical partitioning of X :

• For any h, X is partitioned in Kh cells (X
h,i

)

0iK

h�1

.

• K-ary tree T1 where depth h = 0 is the whole X .

h=0

h=2

h=1

• STOSOO adaptively creates finer and finer partitions of X .

• x
h,i

2 X
h,i

is a specific state per cell where f is evaluated

COMPARISON

deterministic
function deterministic stochastic

known
smoothness DOO Zooming or HOO

unknown
smoothness DIRECT or SOO STOSOO

Hierarchical optimistic optimization algorithms

ASSUMPTIONS
There exists a semi-metric ` on X (triangle inequality not required):

A1 Local smoothness of f : For all x 2 X :

f(x⇤
)� f(x)  `(x, x⇤

).

“f does not decrease too fast around x⇤”

x

⇤ X

f (x⇤) f

f(x⇤)� `(x, x⇤)

A2 Bounded diameters and well-shaped cells: There ex-
ists a decreasing sequence w(h) > 0, such that for any
depth h � 0 and for any cell X

h,i

of depth h, we have
sup

x2Xh,i
`(x

h,i

, x)  w(h). Moreover, there exists ⌫ > 0 such
that for any depth h � 0, any cell X

h,i

contains a `-ball of ra-
dius ⌫w(h) centered in x

h,i

.

MEASURE OF COMPLEXITY
For any " > 0, write the set of "-optimal states:

X
"

def

= {x 2 X , f(x) � f⇤ � ✏}

Definition 1 (near-optimality dimension). Smallest constant d such

that there exists C > 0, for all " > 0, the packing number of X
"

with `-
balls of radius ⌫✏ is less than C"�d

.

Illustration:

f(x⇤
)� f(x) = ⇥(||x⇤ � x||)

ε

ε

`(x, y) = ||x� y|| =) d = 0

f(x⇤
)� f(x) = ⇥(||x⇤ � x||2)

ε

ε

`(x, y) = ||x�y|| =) d = D/2
`(x, y) = ||x� y||2 =) d = 0

STOSOO ALGORITHM

Parameters: number of function evaluations n, maximum num-
ber of evaluations per node k > 0, maximum depth h

max

, and
� > 0.
Initialization:

T  {�[0, 0]} {root node}
t 0 {number of evaluations}
m 0 {number of leaf expansions}

while t  n do
b
max

 �1
for h = 0 to min(depth(T ), h

max

) do
if t  n then

For each leaf �[h, j] 2 L, compute its b-value:
b
h,j

(t) = µ̂
h,j

(t) +
p
log(nk/�)/(2T

h,j

(t))
Among leaves �[h, j] 2 L

t

at depth h, select

�[h, i] 2 argmax

�[h,j]2L
b
h,j

(t)

if b
h,i

(t) � b
max

then
if T

h,i

(t) < k then
Evaluate (sample) state x

t

= x
h,i

.
Collect reward r

t

(s.t. E[r
t

|x
t

] = f(x
t

)).
t t+ 1

else {i.e. T
h,i

(t) � k, expand this node}
Add the K children of �[h, i] to T
b
max

 b
h,i

(t)
end if

end if
end if

end for
end while
Output: The representative point with the highest µ̂

h,j

(n)
among the deepest expanded nodes:

x(n) = argmax

xh,j

µ̂
h,j

(n) s.t. h = depth(T \ L).

How it works?

• STOSOO iteratively traverses and builds a tree over X

• at each traversal it selects several nodes simultaneously

• the selection is optimistic, based on confidence bounds

• selected nodes are either sampled or expanded

• sample the node k times for a confident estimate of f(x
h,i

)

• returns the deepest expanded node

ANALYSIS
Main result:

Theorem 1. Let d be the ⌫/3-near-optimality dimension and C be

the corresponding constant. If the assumptions hold, then the loss of

STOSOO run with parameters k, h
max

, and � > 0, after n iterations is

bounded, with probability 1� �, as:

R
n

 2"+ w (min (h(n)� 1, h
"

, h
max

))

where " =
p

log(nk/�)/(2k) and h(n) is the smallest h 2 N, such that:

C(k + 1)h
max

hX

l=0

(w (l) + 2")
�d � n,

and h
"

is defined as:

h
"

= argmin{h 2 N : w(h+ 1) < "}.

Exponential diameters and d = 0:

Corollary 1. Assume that the diameters of the cells decrease exponen-

tially fast, i.e., w(h) = c�h

for some c > 0 and � < 1. Assume that the

⌫/3-near-optimality dimension is d = 0 and let C be the corresponding

constant. Then the expected loss of STOSOO run with parameters k,

h
max

=

p
n/k, and � > 0, is bounded as:

E[R
n

]  (2 + 1/�)"+ c�
p

n/kmin{0.5/C,1}�2

+ 2�.

Corollary 2. For the choice k = n/ log3(n) and � = 1/
p
n, we have:

E[R
n

] = O
⇣
log

2

(n)p
n

⌘
.
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This result shows that, surprisingly,
STOSOO can achieve the same rate
˜O(n�1/2

), up to a logarithmic factor, as
the HOO or Stochastic DOO algorithms
run with the best possible metric, al-
though STOSOO does not require the
knowledge of it. STOSOO (diamonds)
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(circles) and
`
2

(squares) on f
1

.

THE IMPORTANT CASE d = 0
Example 1: Functions f defined on [0, 1]D that are locally equiv-
alent to a polynomial of degree ↵ around their maximum, i.e.,
f(x) � f(x⇤

) = ⇥(kx � x⇤k↵) for some ↵ > 0, where k · k is any
norm. The choice of semi-metric `(x, y) = kx � yk↵ implies that
the near-optimality dimension d = 0. This covers already a large
class of functions.

Example 2: More generally, we consider a finite dimensional and
bounded space X , (e.g., Euclidean space [0, 1]D) with a finite dou-
bling constant. Let a function in such space have upper- and lower
envelope around x⇤ of the same order, i.e., there exists constants
c 2 (0, 1), and ⌘ > 0, such that for all x 2 X :

min(⌘, c`(x, x⇤
))  f(x⇤

)� f(x)  `(x, x⇤
). (1)

f(x⇤) f(x⇤)� c`(x, x⇤)

f(x⇤)� `(x, x⇤)

f(x⇤)� ⌘

x

⇤

Any function satisfying (1) lies in the gray area and possesses a
lower- and upper-envelopes that are of same order around x⇤.

Example of a function with different order in the upper and lower
envelopes, when `(x, y) = |x� y|↵:

f(x) = 1�
p
x+ (�x2

+

p
x) · (sin(1/x2

) + 1)/2

The lower-envelope behaves like a square root whereas the upper
one is quadratic. The maximum number of `-balls with radius "
that can pack X

"

(i.e., Euclidean balls with radius "1/↵) is at most
of order "1/2/"1/↵  "�3/2, since ↵  1/2 in order to satisfy the
assumption on f . We deduce that there is no semi-metric of the
form |x� y|↵ for which d < 3/2.
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Analysis

Measure of complexity: Examples

StoSOO performs as if it knew the best possible semi-metric `

f (x⇤)� f (x) = ⇥(||x⇤ � x ||)

ε

ε

`(x , y) = ||x � y || ! d = 0

f (x⇤)� f (x) = ⇥(||x⇤ � x ||2)

ε

ε

`(x , y) = ||x �y || ! d = D/2
`(x , y) = ||x � y ||2 ! d = 0

Michal Valko – Stochastic Simultaneous Optimistic Optimization SequeL - 14/24
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Analysis

The important case d = 0
Let a function in such space have upper- and lower envelope
around x⇤ of the same order, i.e., there exists constants c 2 (0, 1),
and ⌘ > 0, such that for all x 2 X :

min(⌘, c`(x , x⇤))  f (x⇤)� f (x)  `(x , x⇤). (1)

f(x⇤) f(x⇤)� c`(x, x⇤)

f(x⇤)� `(x, x⇤)

f(x⇤)� ⌘

x

⇤

Any function satisfying (1) lies in the gray area and possesses a
lower- and upper-envelopes that are of same order around x⇤.

Michal Valko – Stochastic Simultaneous Optimistic Optimization SequeL - 18/24
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Experiments

When d > 0?

Example of a function with di�erent order in the upper and lower
envelopes, when `(x , y) = |x � y |↵:

f (x) = 1 �
p

x + (�x2 +
p

x) · (sin(1/x2) + 1)/2

The lower-envelope behaves like a square root whereas the upper
one is quadratic. There is no semi-metric of the form |x � y |↵ for
which d < 3/2.

Michal Valko – Stochastic Simultaneous Optimistic Optimization SequeL - 24/24
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STOCHASTIC SIMULTANEOUS
OPTIMISTIC OPTIMIZATION

MICHAL.VALKO@INRIA.FR, A.CARPENTIER@STATSLAB.CAM.AC.UK, AND RÉMI.MUNOS@INRIA.FR

SETTING
STOSOO is a global function maximizer:

• Goal: Maximize f : X ! IR given a budget of n evaluations.

• Challenges: f is stochastic and has unknown smoothness

• Protocol: At round t, select state x
t

, observe r
t

such that

E[r
t

|x
t

] = f(x
t

).

After n rounds, return a state x(n).

• Loss: R
n

= sup

x2X f(x)� f(x(n))

STOSOO operates on a given hierarchical partitioning of X :

• For any h, X is partitioned in Kh cells (X
h,i

)

0iK

h�1

.

• K-ary tree T1 where depth h = 0 is the whole X .

h=0

h=2

h=1

• STOSOO adaptively creates finer and finer partitions of X .

• x
h,i

2 X
h,i

is a specific state per cell where f is evaluated

COMPARISON

deterministic
function deterministic stochastic

known
smoothness DOO Zooming or HOO

unknown
smoothness DIRECT or SOO STOSOO

Hierarchical optimistic optimization algorithms

ASSUMPTIONS
There exists a semi-metric ` on X (triangle inequality not required):

A1 Local smoothness of f : For all x 2 X :

f(x⇤
)� f(x)  `(x, x⇤

).

“f does not decrease too fast around x⇤”

x

⇤ X

f (x⇤) f

f(x⇤)� `(x, x⇤)

A2 Bounded diameters and well-shaped cells: There ex-
ists a decreasing sequence w(h) > 0, such that for any
depth h � 0 and for any cell X

h,i

of depth h, we have
sup

x2Xh,i
`(x

h,i

, x)  w(h). Moreover, there exists ⌫ > 0 such
that for any depth h � 0, any cell X

h,i

contains a `-ball of ra-
dius ⌫w(h) centered in x

h,i

.

MEASURE OF COMPLEXITY
For any " > 0, write the set of "-optimal states:

X
"

def

= {x 2 X , f(x) � f⇤ � ✏}

Definition 1 (near-optimality dimension). Smallest constant d such

that there exists C > 0, for all " > 0, the packing number of X
"

with `-
balls of radius ⌫✏ is less than C"�d

.

Illustration:

f(x⇤
)� f(x) = ⇥(||x⇤ � x||)

ε

ε

`(x, y) = ||x� y|| =) d = 0

f(x⇤
)� f(x) = ⇥(||x⇤ � x||2)

ε

ε

`(x, y) = ||x�y|| =) d = D/2
`(x, y) = ||x� y||2 =) d = 0

STOSOO ALGORITHM

Parameters: number of function evaluations n, maximum num-
ber of evaluations per node k > 0, maximum depth h

max

, and
� > 0.
Initialization:

T  {�[0, 0]} {root node}
t 0 {number of evaluations}
m 0 {number of leaf expansions}

while t  n do
b
max

 �1
for h = 0 to min(depth(T ), h

max

) do
if t  n then

For each leaf �[h, j] 2 L, compute its b-value:
b
h,j

(t) = µ̂
h,j

(t) +
p
log(nk/�)/(2T

h,j

(t))
Among leaves �[h, j] 2 L

t

at depth h, select

�[h, i] 2 argmax

�[h,j]2L
b
h,j

(t)

if b
h,i

(t) � b
max

then
if T

h,i

(t) < k then
Evaluate (sample) state x

t

= x
h,i

.
Collect reward r

t

(s.t. E[r
t

|x
t

] = f(x
t

)).
t t+ 1

else {i.e. T
h,i

(t) � k, expand this node}
Add the K children of �[h, i] to T
b
max

 b
h,i

(t)
end if

end if
end if

end for
end while
Output: The representative point with the highest µ̂

h,j

(n)
among the deepest expanded nodes:

x(n) = argmax

xh,j

µ̂
h,j

(n) s.t. h = depth(T \ L).

How it works?

• STOSOO iteratively traverses and builds a tree over X

• at each traversal it selects several nodes simultaneously

• the selection is optimistic, based on confidence bounds

• selected nodes are either sampled or expanded

• sample the node k times for a confident estimate of f(x
h,i

)

• returns the deepest expanded node

ANALYSIS
Main result:

Theorem 1. Let d be the ⌫/3-near-optimality dimension and C be

the corresponding constant. If the assumptions hold, then the loss of

STOSOO run with parameters k, h
max

, and � > 0, after n iterations is

bounded, with probability 1� �, as:

R
n

 2"+ w (min (h(n)� 1, h
"

, h
max

))

where " =
p

log(nk/�)/(2k) and h(n) is the smallest h 2 N, such that:

C(k + 1)h
max

hX

l=0

(w (l) + 2")
�d � n,

and h
"

is defined as:

h
"

= argmin{h 2 N : w(h+ 1) < "}.

Exponential diameters and d = 0:

Corollary 1. Assume that the diameters of the cells decrease exponen-

tially fast, i.e., w(h) = c�h

for some c > 0 and � < 1. Assume that the

⌫/3-near-optimality dimension is d = 0 and let C be the corresponding

constant. Then the expected loss of STOSOO run with parameters k,

h
max

=

p
n/k, and � > 0, is bounded as:

E[R
n

]  (2 + 1/�)"+ c�
p

n/kmin{0.5/C,1}�2

+ 2�.

Corollary 2. For the choice k = n/ log3(n) and � = 1/
p
n, we have:

E[R
n

] = O
⇣
log

2

(n)p
n

⌘
.
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THE IMPORTANT CASE d = 0
Example 1: Functions f defined on [0, 1]D that are locally equiv-
alent to a polynomial of degree ↵ around their maximum, i.e.,
f(x) � f(x⇤

) = ⇥(kx � x⇤k↵) for some ↵ > 0, where k · k is any
norm. The choice of semi-metric `(x, y) = kx � yk↵ implies that
the near-optimality dimension d = 0. This covers already a large
class of functions.

Example 2: More generally, we consider a finite dimensional and
bounded space X , (e.g., Euclidean space [0, 1]D) with a finite dou-
bling constant. Let a function in such space have upper- and lower
envelope around x⇤ of the same order, i.e., there exists constants
c 2 (0, 1), and ⌘ > 0, such that for all x 2 X :

min(⌘, c`(x, x⇤
))  f(x⇤

)� f(x)  `(x, x⇤
). (1)

f(x⇤) f(x⇤)� c`(x, x⇤)

f(x⇤)� `(x, x⇤)

f(x⇤)� ⌘

x

⇤

Any function satisfying (1) lies in the gray area and possesses a
lower- and upper-envelopes that are of same order around x⇤.

Example of a function with different order in the upper and lower
envelopes, when `(x, y) = |x� y|↵:

f(x) = 1�
p
x+ (�x2

+

p
x) · (sin(1/x2

) + 1)/2

The lower-envelope behaves like a square root whereas the upper
one is quadratic. The maximum number of `-balls with radius "
that can pack X

"

(i.e., Euclidean balls with radius "1/↵) is at most
of order "1/2/"1/↵  "�3/2, since ↵  1/2 in order to satisfy the
assumption on f . We deduce that there is no semi-metric of the
form |x� y|↵ for which d < 3/2.
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Tree-based learner Tree-based exploration or tree search algorithm is a classical ap-
proach that has been widely applied to optimization as well as bandits or planning (Kocsis
and Szepesvári, 2006; Coquelin and Munos, 2007; Hren and Munos, 2008), see Munos (2014)
for a survey. At each round, the learner selects a cell P

h,i

containing a predefined representa-
tive element x

h,i

and asks for its evaluation. We denote its value f
h,i

= f(x
h,i

). T
h,i

denotes
the total number of evaluations allocated by the learner to the cell P

h,i

. Our learners collect
the evaluations of f and organize them in a tree structure T that is simply a subset of P,
T = {P

h,i

2 P : T
h,i

> 0}, T ⇢ P . We define, specially for the noisy case, the estimated

value of the cell b

f

h,i

. Given the T

h,j

evaluations y

1

, . . . , y

Th,j , we have b

f

h,i

, 1

Th,j

P

Th,j

s=1

y

s

,

the empirical average of rewards obtained at this cell. We say that the learner opens a cell
P
h,i

with m evaluations if it asks for m evaluations from each of the children cells of cell
P
h,i

. In the deterministic feedback, m = 1. For the sake of simplicity, the bounds reported
in this paper are in terms of the total number of openings n, instead of evaluations. The
number of function evaluations is upper bounded by Kn, where K is the maximum number
of children cells of any cell in P.
The Lambert W function Our results use the Lambert W function. Solving for the
variable z, the equation A = ze

z gives z = W (A). W is multivalued for z  0. However, in
this paper, we consider z � 0 and W (z) � 0, referred to as the standard W. W cannot be
expressed in terms of elementary functions. Yet, we have W (z) = log (z/ log z)+o(1) (Hoor-
far and Hassani, 2008). W has applications in physics and applied mathematics (Corless
et al., 1996).
Finally, let [a : c] = {a, a+ 1, . . . , c} with a, c 2 N, a  c, and [a] = [1 : a]. log

d

denotes the
logarithm in base d, d 2 R. Without a subscript, log is the natural logarithm in base e.

3. Adaptive deterministic optimization and improved rate

3.1 The SequOOL algorithm Parameters: n, P = {P
h,i

}
Initialization: Open P

0,1

. h
max

=
j

n

log(n)

k

·
For h = 1 to h

max

Open
⌅

h

max

h

⇧

cells P
h,i

of depth h

with largest values f
h,j

.

Output x(n) = argmax
xh,i:Ph,i2T

f

h,i

.

Figure 1: The SequOOL Algorithm

The Sequential Optimistic Optimiza-
tion aLgorithm SequOOL is described
in Figure 1. SequOOL explores se-
quentially the depth one by one, go-
ing deeper and deeper with a decreas-
ing number of cells opened per depth h:
bh

max

/hc openings at depth h. h
max

is
the maximal depth that is opened. The
analysis of SequOOL shows that it is rel-
evant that h

max

,
⌅

n/log n
⇧

, where log n is the n-th harmonic number, log n , P

n

t=1

1

t

,

with log n  log n+ 1 for any positive integer n. SequOOL returns the element of the evalu-
ated cell with the highest value, x(n) = argmax

xh,i:Ph,i2T
f

h,i

. The budget is set to n+1 to preserve

the simplicity of the bounds. SequOOL uses no more openings than that as

1 +
h

max

X

h=1

�

h

max

h

⌫

 1 + h

max

h

max

X

h=1

1

h

= 1 + h

max

log h
max

 n+ 1.
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3.2 Analysis of SequOOL

For any global optimum x

?, let ?
h

be the depth of the deepest opened node containing x

?

at the end of the opening of depth h by SequOOL (an iteration of the for cycle). Note
that ?

(·) is increasing. The proofs of the following statements are given in Appendix A.

Lemma 2 For any global optimum x

? with associated (⌫, ⇢) as defined in Assumption 1,
for any depth h 2 [h

max

], if h

max

h

� C⇢

�d(⌫,⇢)h, we have ?
h

= h, while ?
0

= 0.

Lemma 2 states that as long as SequOOL opens more cells at depth h than the number of
near-optimal cells at depth h, the cell containing x

? is opened at depth h.

Theorem 3 Let W be the standard Lambert W function (see Section 2). For any function f

and one of its global optima x

? with associated (⌫, ⇢), and near-optimality dimension d =
d(⌫, ⇢), we have, after n rounds, the simple regret of SequOOL bounded by

• If d = 0, r

n

 ⌫⇢

1

C

j
n

logn

k

. • If d > 0, r

n

 ⌫e

� 1

dW

⇣
d log(1/⇢)

C

j
n

logn

k⌘

.

For more readability, Corollary 4 uses a lower bound on W (Hoorfar and Hassani, 2008).

Corollary 4 If d > 0, assumptions in Theorem 3 hold and
⌅

n/log n
⇧

d log 1

⇢

/C > e,

r

n

 ⌫ (C/(d log(1/⇢)))
1

d (log (nd log(1/⇢)/C))
1

d
⌅

n/log n
⇧� 1

d
.

3.3 Discussion for the deterministic feedback

Comparison with SOO SOO and SequOOL both address deterministic optimization with-
out knowledge of the smoothness. The regret guarantees of SequOOL are an improvement
over SOO. While when d > 0 both algorithms achieve a regret eO �

n

�1/d

�

, when d = 0, the

regret of SOO is O(⇢
p
n) while the regret of SequOOL is eO (⇢n) which is a significant improve-

ment. As discussed in the introduction and by Valko et al. (2013, Section 5), the case d = 0
is very common. As pointed out by Munos (2011, Corollary 2), SOO has to actually know
whether d = 0 or not to set the maximum depth of the tree as a parameter for SOO. SequOOL
is fully adaptive, does not need to know any of this and actually gets a better rate.4 The
conceptual di↵erence with SOO is that SequOOL is sequential, for a given depth h, SequOOL
first opens cells at depth h and then at depth h+1 and so on, without coming back to lower
depths. Indeed, an opening at depth h+1 is based on the values observed while opening at
depth h. Therefore, it is natural and less wasteful to do the opening in a sequential order.
Moreover, SequOOL is more conservative as it opens more the lower depths while SOO opens
every depth equally. However from the depth perspective, SequOOL is more aggressive as it
opens depth as high as n, while SOO stops at

p
n.

Comparison with DOO Contrarily to SequOOL, DOO knows the smoothness of the func-
tion. However this knowledge only improves the logarithmic factor in the current upper
bound. When d > 0, DOO achieves a regret O �

n

�1/d

�

, when d = 0, the loss is O (⇢n).

4. A similar behavior is also achieved by combining two SOO algorithms, by running half of the samples for
d = 0 and half for d > 0. However, SequOOL does this naturally and gets a better rate when d = 0.
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SUMMARY:   We go deep enough

OBSERVATION: The deeper we go, the better optimum we find.

MAIN RESULT

SUMMARY:  d=0 → r < ρn    AND  d>0 → r < n1/d   
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Figure 4: Left & center: Deterministic feedback. Right: Garland function for which d = 0.
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This function has d > 0 for the standard partitioning (Grill et al., 2015). The second
is the garland function (G(x), Valko et al., 2013, Figure 4, bottom right) with G(x) ,
4x(1�x)(3

4

+ 1

4

(1�p| sin(60x)|)). Function G has d = 0 for the standard partitioning (Valko
et al., 2013). Both functions are in one dimension, X = R. We remark that our algorithms
work in any dimension, but with the current computational power they would not scale
beyond a thousand dimensions.

StroquOOL outperforms POO and HOO and adapts to lower noise. In Figure 3, we
report the results of StroquOOL, POO, and HOO for di↵erent values of ⇢. As detailed in the
caption, we vary the range of noise b and the range of noise e

b used by HOO and POO. In
all our experiments, StroquOOL outperforms POO and HOO. StroquOOL adapts to low noise,
its performance improves when b diminishes. To see that, compare top-left (b = 0), top-
middle (b = .1), and top-right (b = 1) subfigures. On the other hand, POO and HOO do not
naturally adapt to the range of the noise: For a given parameter eb = 1, the performance
is unchanged when the range of the real noise varies as seen by comparing again top-left
(b = 0), top-middle (b = .1), and top-right (b = 1). However, note that POO and HOO
can adapt to noise and perform empirically well if they have a good estimate of the range
b = e

b as in bottom-left, or if they underestimate the range of the noise, eb ⌧ b, as in
bottom-middle. In Appendix F, we report similar results on the garland function. Finally,
StroquOOL demonstrates its adaptation to both worlds in Figure 4 (left), where it achieves
exponential decreasing loss in the case d = 0 and deterministic feedback.

Regrets of SequOOL and StroquOOL have exponential decay when d = 0. In Figure 4,
we test in the deterministic feedback case with SequOOL, StroquOOL, SOO and the uniform
strategy on the garland function (left) and the wrap-sine function (middle). Interestingly,
for the garland function, where d = 0, SequOOL outperforms SOO and displays a truly
exponential regret decay (y-axis is in log scale). SOO appears to have the regret of e�

p
n.

StroquOOL which is expected to have a regret e�n/ log

2

n lags behind SOO. Indeed, n/ log2 n
exceeds

p
n for n > 10000, for which the result is beyond the numerical precision. In

Figure 4 (middle), we used the wrapped-sine. While all algorithms have similar theoretical
guaranties since here d > 0, SOO outperforms the other algorithms.
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is unchanged when the range of the real noise varies as seen by comparing again top-left
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b as in bottom-left, or if they underestimate the range of the noise, eb ⌧ b, as in
bottom-middle. In Appendix F, we report similar results on the garland function. Finally,
StroquOOL demonstrates its adaptation to both worlds in Figure 4 (left), where it achieves
exponential decreasing loss in the case d = 0 and deterministic feedback.

Regrets of SequOOL and StroquOOL have exponential decay when d = 0. In Figure 4,
we test in the deterministic feedback case with SequOOL, StroquOOL, SOO and the uniform
strategy on the garland function (left) and the wrap-sine function (middle). Interestingly,
for the garland function, where d = 0, SequOOL outperforms SOO and displays a truly
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Lower bounds As discussed by Munos (2014) for d = 0, DOO matches the lower bound
and it is even comparable to the lower-bound for concave functions. While SOO was not
matching the bound of DOO, with our result, we now know that, up to a log factor, it is
possible to achieve the same performance as DOO, without the knowledge of the smoothness.

4. Noisy optimization with adaptation to low noise

4.1 The StroquOOL algorithm Parameters: n, P = {P
h,i

}
Init: Open P

0,1

h

max

times.

h

max

=
j

n

2(log

2

n+1)

2

k

,
p

max

= blog
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(h
max

)c.

For h = 1 to h

max

J Exploration I
For p = blog

2

(h
max

/h)c down to 0

Open 2p times the
⌅

h

max

h2

p

⇧

non-opened cells P
h,i
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values b

f

h,i

and given that T
h,i

� 2p.

For p 2 [0 : p
max

] J Cross-validation I
Evaluate h

max

times the candidates:
x(n, p) = argmax

(h,i)2T ,Th,i�2

p

b

f

h,i

.

Output x(n) = argmax
{x(n,p),p2[0:p

max

]}
b

f(x(n, p))

Figure 2: The StroquOOL Algorithm

In the presence of noise, it is natural to
evaluate the cells multiple times, not just
one time as in the deterministic case. The
amount of times a cell should be evalu-
ated to di↵erentiate its value from the op-
timal value of the function depends on the
gap between these two values as well as
the range of noise. As we do not want to
make any assumptions on knowing these
quantities, our algorithm tries to be ro-
bust to any potential values by not mak-
ing a fixed choice on the number of eval-
uations. Intuitively, StroquOOL implic-
itly uses modified versions of SequOOL,
denoted SequOOL(m),5 where each cell is
evaluated m times, m � 1, while in
SequOOL m = 1. On one side, given one
instance of SequOOL(m), evaluating more each cells (m large) leads to a better quality of the
mean estimates in each cell. On the other side, as a tradeo↵, it implies that SequOOL(m) is
using more evaluations per depth and therefore is not be able to explore deep depths of the
partition. The largest depth explored is now O(n/m). StroquOOL then implicitly performs
the same amount of evaluations as it would be performed by log n instances of SequOOL(m)
each with a number of evaluations of m = 2p, where we have p 2 [0 : log n].

The St(r)ochastic sequential Optimization aLgorithm StroquOOL is described in Fig-
ure 2. Remember that ‘opening’ a cell means ‘evaluating’ its children. The algorithm opens
cells by sequentially diving them deeper and deeper from the root node h = 0 to a maximal
depth of h

max

. At depth h, we allocate, in a decreasing fashion, di↵erent number of eval-
uations 2p to the cells with highest value of that depth, with p starting at blog

2

(h
max

/h)c
down to 0. The best cell that has been evaluated at least O(h

max

/h) times is opened
with O(h

max

/h) evaluations, the two next best cells that have been evaluated at least
O(h

max

/(2h)) times are opened with O(h
max

/(2h)) evaluations, the four next best cells
that have been evaluated at least O(h

max

/(4h)) times are opened with O(h
max

/(4h)) eval-
uations and so on, until some O(h

max

/h) next best cells that have been evaluated at least
once are opened with one evaluation. More precisely, given, p and h, we open, with 2p evalu-
ations, the bh

max

/(h2p)c non-previously-opened cells P
h,i

with highest values b

f

h,i

and given

5. Again, this is only for the intuition, the algorithm is not a meta-algorithm over SequOOL(m)’s.

8

picking up the best point, 
with n samples 

opening more promising 
cells more o#en

StroquOOL(m= 2p) tradeoffs 
- small m: quality estimates 
- big m: we can go deeper
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SUMMARY:   We go deep enough

OBSERVATION: The deeper we go, the better optimum we find.

MAIN RESULT

SUMMARY: r < n1/(d+2)          ….before it was r < n1/d

simple approach to optimization under a minimal smoothness assumption

that T

h,i

� 2p. The maximum number of evaluations of any cell is p

max

, blog
2

(h
max

)c.
For each p 2 [0 : p

max

], the candidate output x(n, p) is the cell with highest estimated
value that has been evaluated at least 2p times, x(n, p) , argmax

(h,i)2T ,Th,i�2

p

b

f

h,i

. We set

h

max

,
⌅

n/(2(log
2

n+ 1)2)
⇧

. In Appendix B, we prove that StroquOOL uses less than n+1
openings.

4.2 Analysis of StroquOOL

The proofs of this section use a similar structure to the ones for the deterministic feedback.
Additionally, they take into account the uncertainty created by the noise. The proofs of the
following statements are given in Appendix D and E. For any x

?

, ?
h,p

is the depth of the
deepest opened node with at least 2p evaluations containing x

? at the end of the opening
of depth h of StroquOOL.

Lemma 5 For any global optimum x

? with associated (⌫, ⇢) (see Assumption 1), with prob-
ability at least 1 � �, for all depths h 2 ⇥⌅

h
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/h)c], if
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h and if h

max

h2

p � C⇢

�d(⌫,⇢)h, we have ?
h,p

= h while ?
0,p

= 0.

Lemma 5 gives two conditions so that the cell containing x

? is opened at depth h. This
holds if (1) StroquOOL opens, with 2p evaluations, more cells at depth h than the number
of near-optimal cells at depth h (hmax

h2

p � C⇢

�d(⌫,⇢)h) and (2) the 2p evaluations are su�cient
to discriminate the empirical average of near-optimal cells from the empirical average of
sub-optimal cells (b

p

log(4n/�)/2p+1  ⌫⇢

h).

To state the next theorems, we introduce eh a positive real number satisfying h
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)

. The quan-

tity e

h gives the depth of deepest cell opened by StroquOOL that contains x

? with high
probability. Consequently, eh also lets us characterize for which regime of the noise range b

we recover results similar to the loss of the deterministic case. Discriminating on the noise
regime, we now state our results, Theorem 6 for a high noise and Theorem 8 for a low one.

Theorem 6 High-noise regime After n rounds, for any function f and one of its global
optima x

? with associated (⌫, ⇢), and near-optimality dimension denoted for simplicity d =
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where W is the standard Lambert W function.
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d(⌫, ⇢), if b � ⌫⇢
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where W is the standard Lambert W function.

Corollary 7 With the assumptions of Theorem 6 and n > e,
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Figure 3: Bottom right: Wrapped-sine function (d > 0). The true range of the noise b

and the range used by HOO and POO is eb. Top: b = 0,eb = 1 left — b = 0.1,eb = 1
middle — b = e

b = 1 right. Bottom: b = e

b = 0.1 left — b = 1,eb = 0.1 middle.

or POO, we designed StroquOOL without using upper-confidence bounds (UCBs). Indeed,
UCB approaches are overly conservative as they use hard-coded (and often overestimated)
upper-bound on b. Finally, note that using UCB approaches with empirical estimation of
the variance would not achieve the best of both worlds: a result that is discussed in the
next paragraph. Indeed, an assumption on the noise b is still used in these approaches.
This prevents having eO (e�n) when d = 0 and b ⇡ 0.

Adaptation to the deterministic case and d=0 When the noise is very low, i.e.,

when b  ⌫⇢

e
h

/

p

log(n3/2

/b), which includes the deterministic feedback, in Theorem 8 and
Corollary 9, StroquOOL recovers the same rate as DOO and SequOOL up to logarithmic factors.
Remarkably, StroquOOL obtains an exponentially decreasing regret when d = 0 while POO,
StoSOO or HOO only guarantee a regret of eO(

p

1/n) when unaware of the range b. Therefore,
up to log factors, StroquOOL achieves naturally the best of both worlds without being aware
of the nature of the feedback (either stochastic or deterministic). Again, this is a behavior
that one cannot expect from HOO, POO, and StoSOO as they explicitly use confidence intervals
in their algorithm assuming the range of noise is b = 1 which limits the maximum depth
that can be explored.

5. Experiments

We empirically demonstrate how SequOOL and StroquOOL adapt to the complexity of the
data and compare them to SOO, POO, and HOO. We use two functions used by prior work as
testbeds for optimization of di�cult function without the knowledge of smoothness. The
first one is thewrapped-sine function (S(x), Grill et al., 2015, Figure 3, bottom right) with

11



DISCUSSION AND WHAT’S NEXT

we sample ~1/h =  Zipf law (ex.: the frequency of any word is 
inversely proportional to its rank in the frequency table) 
Adaption to smoothness 
Adaptation to noise (no need to provide it as input) 

even to the noise = 0 — deterministic 
deterministic case, exp(-n) for d=0, first exponential rate  

before only possible with very strong assumptions 
Not a panacea: price to pay for minimal assumptions and global 
guarantee 

hyper-parameter optimization 
adversarial/stochastic (COLT 2018) 
NEXT: make MCTS for faster by adapting it to noise
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Appendix A. Regret analysis of SequOOL for deterministic feedback

Lemma 10 For any global optimum x

? with associated (⌫, ⇢) as defined in Assumption 1,
for any depth h 2 [h

max

], if h

max

h

� C⇢

�d(⌫,⇢)h, we have ?
h

= h, while ?
0

= 0.

Proof We prove Lemma 2 by induction over depth h.

1� For h = 0, we trivially have ?
h

� 0.
2� Now consider h > 0 and assume that h

max

h

� C⇢

�d(⌫,⇢)h. We want to show that ?
h�1

=
h � 1. If h = 1 we already know ?

0

� 0 and if h > 1, we have that for all h0 2 [h � 1],

h

max

h

0 � h

max

h

� C⇢

�d(⌫,⇢)h � C⇢

�d(⌫,⇢)h

0
,

which means, assuming that the proposition of the lemma is true for h

0 = h � 1 that
?

h�1

= h� 1. Therefore, at the end of the processing of depth h� 1, during which we were
opening the cells of depth h� 1 we managed to open the cell (h� 1, i?

h�1

) the optimal node

of depth h�1 (i.e., such that x? 2 P
h�1,i

?
h�1

). During phase h, the
⌅

h

max

h

⇧

cells from {P
h,i

}
i

with highest values {f
h,i

}
i

are opened. For the purpose of contradiction, let us assume that

P
h,i

?
h
is not one of them. This would mean that there exist at least

⌅

h

max

h

⇧

cells from {P
h,i

}
i

,

distinct from P
h,i

?
h
, satisfying f

h,i

� f

h,i

?
h
. As f

h,i

? � f(x?) � ⌫⇢

h by Assumption 1, this

means we have N
h

(3⌫⇢h) � ⌅

h

max

h

⇧

+1 (the +1 is for P
h,i

?
h
). However by assumption of the

lemma we have
⌅

h

max

h

⇧ � ⌅

C⇢

�d(⌫,⇢)h

⇧

. It follows that N
h

(3⌫⇢h) >
⌅

C⇢

�d(⌫,⇢)h

⇧

. This con-
tradicts f being of near-optimality dimension d(⌫, ⇢) with associated constant C as defined
in Definition 1. Indeed the condition N

h

(3⌫⇢h)  C⇢

�dh in Definition 1 is equivalent to the
condition N

h

(3⌫⇢h)  ⌅

C⇢

�dh

⇧

as N
h

(3⌫⇢h) is an integer.

Theorem 3 Let W be the standard Lambert W function (see Section 2). For any function f

and one of its global optima x

? with associated (⌫, ⇢), and near-optimality dimension d =
d(⌫, ⇢), we have, after n rounds, the simple regret of SequOOL bounded by

• If d = 0, r

n

 ⌫⇢

1

C

j
n

logn

k

. • If d > 0, r

n

 ⌫e

� 1

dW

⇣
d log(1/⇢)

C

j
n

logn

k⌘

.

Proof Let x

? be a global optimum with associated (⌫, ⇢). For simplicity, let d = d(⌫, ⇢).
We have

f(x(n))
(a)
� f?h

max

+1,i

?

(b)
� f(x?) � ⌫⇢

?h
max

+1

.

where (a) is because x(?
h

max

+ 1, i?) 2 T and x(n) = argmaxPh,i2T f

h,i

, and (b) is by
Assumption 1. Note that the tree has depth h

max

+ 1 in the end. From the previous
inequality we have r

n

= sup
x2X f (x) � f (x(n))  ⌫⇢

?h
max

+1. For the rest of the proof,
we want to lower bound ?

h

max

. Lemma 2 provides a su�cient condition on h to get lower
bounds. This condition is an inequality in which as h gets larger (more depth) the condition
is more and more likely not to hold. For our bound on the regret of StroquOOL to be small,
we want a quantity h so that the inequality holds but having h as large as possible. So it
makes sense to see when the inequality flip signs which is when it turns to equality. This
is what we solve next. We solve Equation 2 and then verify that it gives a valid indication
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of the behavior of our algorithm in term of its optimal h. We denote h the positive real
number satisfying

h

max

h

= C⇢

�dh

. (2)

As ⇢ < 1, d � 0 and h � 0 we have ⇢

�dh � 1. This gives C⇢

�dh � 1. Finally as
h

max

h

= C⇢

�dh, we have h  h

max

.

If d = 0 we have h = h

max

/C. If d > 0 we have h = 1

d log(1/⇢)

W (h
max

d log(1/⇢)/C) where

W is the standard Lambert W function. Using standard properties of the b·c function, we
have

h

max

⌅

h

⇧ � h

max

h

= C⇢

�dh � C⇢

�dbhc
. (3)

We always have ?
h

max

� 0. If h � 1, as discussed above
⌅

h

⇧ 2 [h
max

], therefore ?
h

max

�
?bhc, as ?· is increasing. Moreover ?

h

= h because of Lemma 2 which assumptions are

verified because of Equation 3 and
⌅

h

⇧ 2 [0 : h
max

]. So in general we have ?
h

max

� ⌅

h

⇧

. If

d = 0 we have, r
n

 ⌫⇢

?h
max

+1  ⌫⇢

bhc+1 = ⌫⇢

bh
max

C c+1  ⌫⇢

h
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C = ⌫⇢

1

C

j
n

logn

k

.

If d > 0 r

n

 ⌫⇢

?h
max

+1  ⌫⇢

1

d log(1/⇢)W

⇣
h
max

d log(1/⇢)
C

⌘

. W (x) verifies for x � e, W (x) �
log

⇣

x

log x

⌘

(Hoorfar and Hassani, 2008). Therefore, if h
max

d log(1/⇢)/C > e we have, de-

noting d

⇢

= d log(1/⇢),

r

n

⌫
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Appendix B. StroquOOL is not using a budget larger than n + 1

Notice, for any given depth h 2 [1 : h
max

], StroquOOL never uses more evaluations than
(p

max

+ 1)hmax

h

as

blog
2

(h

max

/h)c
X

p=0

�

h

max

h2p

⌫

2p  (blog
2

(h
max

/h)c + 1)
h

max

h

Summing over the depths, StroquOOL never uses more evaluations than the budget n + 1
during its depth exploration as

1 + (p
max

+ 1)
h

max

X

h=1

�

h

max

h

⌫

 1 + (p
max

+ 1)h
max

h

max

X

h=1

1

h

= 1 + h

max

log(h
max

)(p
max

+ 1)  1 + h

max

(p
max

+ 1)2  n/2 + 1.

17

simple approach to optimization under a minimal smoothness assumption

of the behavior of our algorithm in term of its optimal h. We denote h the positive real
number satisfying

h

max

h

= C⇢

�dh

. (2)

As ⇢ < 1, d � 0 and h � 0 we have ⇢

�dh � 1. This gives C⇢

�dh � 1. Finally as
h

max

h

= C⇢

�dh, we have h  h

max

.

If d = 0 we have h = h

max

/C. If d > 0 we have h = 1

d log(1/⇢)

W (h
max

d log(1/⇢)/C) where

W is the standard Lambert W function. Using standard properties of the b·c function, we
have

h

max

⌅

h

⇧ � h

max

h

= C⇢

�dh � C⇢

�dbhc
. (3)

We always have ?
h

max

� 0. If h � 1, as discussed above
⌅

h

⇧ 2 [h
max

], therefore ?
h

max

�
?bhc, as ?· is increasing. Moreover ?

h

= h because of Lemma 2 which assumptions are

verified because of Equation 3 and
⌅

h

⇧ 2 [0 : h
max

]. So in general we have ?
h

max

� ⌅

h

⇧

. If

d = 0 we have, r
n

 ⌫⇢

?h
max

+1  ⌫⇢

bhc+1 = ⌫⇢

bh
max

C c+1  ⌫⇢

h
max

C = ⌫⇢

1

C

j
n

logn

k

.

If d > 0 r

n

 ⌫⇢

?h
max

+1  ⌫⇢

1

d log(1/⇢)W

⇣
h
max

d log(1/⇢)
C

⌘

. W (x) verifies for x � e, W (x) �
log

⇣

x

log x

⌘

(Hoorfar and Hassani, 2008). Therefore, if h
max

d log(1/⇢)/C > e we have, de-

noting d

⇢

= d log(1/⇢),

r

n

⌫

 ⇢

1

d⇢

✓
log

✓
h
max

d⇢/C

log

(

h
max

d⇢/C)

◆◆

= e

1

d log(1/⇢)

0

@
log

0

@ h
max

d⇢/C

log

✓
h
max

d⇢
C

◆

1

A

1

A
log(⇢)

=

0

@

h

max

d

⇢

/C

log
⇣

h

max

d⇢

C

⌘

1

A

� 1

d

.

Appendix B. StroquOOL is not using a budget larger than n + 1

Notice, for any given depth h 2 [1 : h
max

], StroquOOL never uses more evaluations than
(p

max

+ 1)hmax

h

as

blog
2

(h

max

/h)c
X

p=0

�

h

max

h2p

⌫

2p  (blog
2

(h
max

/h)c + 1)
h

max

h

Summing over the depths, StroquOOL never uses more evaluations than the budget n + 1
during its depth exploration as

1 + (p
max

+ 1)
h

max

X

h=1

�

h

max

h

⌫

 1 + (p
max

+ 1)h
max

h

max

X

h=1

1

h

= 1 + h

max

log(h
max

)(p
max

+ 1)  1 + h

max

(p
max

+ 1)2  n/2 + 1.

17

simple approach to optimization under a minimal smoothness assumption

of the behavior of our algorithm in term of its optimal h. We denote h the positive real
number satisfying

h

max

h

= C⇢

�dh

. (2)

As ⇢ < 1, d � 0 and h � 0 we have ⇢

�dh � 1. This gives C⇢

�dh � 1. Finally as
h

max

h

= C⇢

�dh, we have h  h

max

.

If d = 0 we have h = h

max

/C. If d > 0 we have h = 1

d log(1/⇢)

W (h
max

d log(1/⇢)/C) where

W is the standard Lambert W function. Using standard properties of the b·c function, we
have

h

max

⌅

h

⇧ � h

max

h

= C⇢

�dh � C⇢

�dbhc
. (3)

We always have ?
h

max

� 0. If h � 1, as discussed above
⌅

h

⇧ 2 [h
max

], therefore ?
h

max

�
?bhc, as ?· is increasing. Moreover ?

h

= h because of Lemma 2 which assumptions are

verified because of Equation 3 and
⌅

h

⇧ 2 [0 : h
max

]. So in general we have ?
h

max

� ⌅

h

⇧

. If

d = 0 we have, r
n

 ⌫⇢

?h
max

+1  ⌫⇢

bhc+1 = ⌫⇢

bh
max

C c+1  ⌫⇢

h
max

C = ⌫⇢

1

C

j
n

logn

k

.

If d > 0 r

n

 ⌫⇢

?h
max

+1  ⌫⇢

1

d log(1/⇢)W

⇣
h
max

d log(1/⇢)
C

⌘

. W (x) verifies for x � e, W (x) �
log

⇣

x

log x

⌘

(Hoorfar and Hassani, 2008). Therefore, if h
max

d log(1/⇢)/C > e we have, de-

noting d

⇢

= d log(1/⇢),

r

n

⌫

 ⇢

1

d⇢

✓
log

✓
h
max

d⇢/C

log

(

h
max

d⇢/C)

◆◆

= e

1

d log(1/⇢)

0

@
log

0

@ h
max

d⇢/C

log

✓
h
max

d⇢
C

◆

1

A

1

A
log(⇢)

=

0

@

h

max

d

⇢

/C

log
⇣

h

max

d⇢

C

⌘

1

A

� 1

d

.

Appendix B. StroquOOL is not using a budget larger than n + 1

Notice, for any given depth h 2 [1 : h
max

], StroquOOL never uses more evaluations than
(p

max

+ 1)hmax

h

as

blog
2

(h

max

/h)c
X

p=0

�

h

max

h2p

⌫

2p  (blog
2

(h
max

/h)c + 1)
h

max

h

Summing over the depths, StroquOOL never uses more evaluations than the budget n + 1
during its depth exploration as

1 + (p
max

+ 1)
h

max

X

h=1

�

h

max

h

⌫

 1 + (p
max

+ 1)h
max

h

max

X

h=1

1

h

= 1 + h

max

log(h
max

)(p
max

+ 1)  1 + h

max

(p
max

+ 1)2  n/2 + 1.

17

PROPERTY:  if we go that deep, we are near-optimal

SUMMARY:   We go deep enough

DEFINITION:   how deep we can go
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Tree-based learner Tree-based exploration or tree search algorithm is a classical ap-
proach that has been widely applied to optimization as well as bandits or planning (Kocsis
and Szepesvári, 2006; Coquelin and Munos, 2007; Hren and Munos, 2008), see Munos (2014)
for a survey. At each round, the learner selects a cell P

h,i

containing a predefined representa-
tive element x

h,i

and asks for its evaluation. We denote its value f
h,i

= f(x
h,i

). T
h,i

denotes
the total number of evaluations allocated by the learner to the cell P

h,i

. Our learners collect
the evaluations of f and organize them in a tree structure T that is simply a subset of P,
T = {P

h,i

2 P : T
h,i

> 0}, T ⇢ P . We define, specially for the noisy case, the estimated

value of the cell b

f

h,i

. Given the T

h,j

evaluations y

1

, . . . , y

Th,j , we have b

f

h,i

, 1

Th,j

P

Th,j

s=1

y

s

,

the empirical average of rewards obtained at this cell. We say that the learner opens a cell
P
h,i

with m evaluations if it asks for m evaluations from each of the children cells of cell
P
h,i

. In the deterministic feedback, m = 1. For the sake of simplicity, the bounds reported
in this paper are in terms of the total number of openings n, instead of evaluations. The
number of function evaluations is upper bounded by Kn, where K is the maximum number
of children cells of any cell in P.
The Lambert W function Our results use the Lambert W function. Solving for the
variable z, the equation A = ze

z gives z = W (A). W is multivalued for z  0. However, in
this paper, we consider z � 0 and W (z) � 0, referred to as the standard W. W cannot be
expressed in terms of elementary functions. Yet, we have W (z) = log (z/ log z)+o(1) (Hoor-
far and Hassani, 2008). W has applications in physics and applied mathematics (Corless
et al., 1996).
Finally, let [a : c] = {a, a+ 1, . . . , c} with a, c 2 N, a  c, and [a] = [1 : a]. log

d

denotes the
logarithm in base d, d 2 R. Without a subscript, log is the natural logarithm in base e.

3. Adaptive deterministic optimization and improved rate

3.1 The SequOOL algorithm Parameters: n, P = {P
h,i

}
Initialization: Open P

0,1

. h
max

=
j

n

log(n)

k

·
For h = 1 to h

max

Open
⌅

h

max

h

⇧

cells P
h,i

of depth h

with largest values f
h,j

.

Output x(n) = argmax
xh,i:Ph,i2T

f

h,i

.

Figure 1: The SequOOL Algorithm

The Sequential Optimistic Optimiza-
tion aLgorithm SequOOL is described
in Figure 1. SequOOL explores se-
quentially the depth one by one, go-
ing deeper and deeper with a decreas-
ing number of cells opened per depth h:
bh

max

/hc openings at depth h. h
max

is
the maximal depth that is opened. The
analysis of SequOOL shows that it is rel-
evant that h

max

,
⌅

n/log n
⇧
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with log n  log n+ 1 for any positive integer n. SequOOL returns the element of the evalu-
ated cell with the highest value, x(n) = argmax
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