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Munos: From bandits to Monte-Carlo Tree Search: The optimistic principle applied to optimization and planning, 2014
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MOGO — CRAZY STONE — ALPHAGO(0) &z

ALPHAGO ZERO CHEAT SHEET

The training pipeline for AlphaGo Zero consists of three stages, executed in pardllel
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BIG QUESTIONS? é,z -y 7,

How black-box is black-box?

What are the minimal assumptions?

What are the minimal assumptions?
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e Goal: Maximize f : X — IR given a budget of n evaluations.

e Challenges: f is stochastic and has unknown smoothness

e Protocol: At round ¢, select state x+, observe r; such that

Llre|ze] = f(2e).
After n rounds, return a state x(n).

o Loss: R, =sup,cy f(x) — f(z(n))
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PARTITIONING: 1D ZLaA—
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e Forany h, X is partitioned in K" cells (X}, ;)o<i<xn_1-

o K-ary tree 7., where depth h = 0 is the whole X'.

h=0 | |
h=1| |
h=2] |
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HOW IT WORKS? (227 B
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PARTITIONING: 2D
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EXAMPLE: 1D A'Z 7

f(xy) -

: ~
Xt

Lipschitz property - the evaluation of f at x: provides

a first upper-bound on f
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EXAMPLE: 1D (2273

New point - refined upper-bound on f




EXAMPLE: 1D 6'2 7

Question: where should one sample the next point?

Answer: select the point with highest upper bound!
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GLOBAL OPTIMIZERS V4 '/Z S

very few guarantee a global optimality

smoothness deterministic stochastic
known DOO Zooming, HOO
unknown DiRect, 500, SequO0L StosS00, POO, StroqulOOL

Which functions are difficult to optimize?

What is the right characterization of the problem?




UPPER CONFIDENCE BOUND BASED ALGOS
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UPPER CONFIDENCE BOUND BASED ALGOS
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VIDEO EXAMPLES FOR THE CONTINUOUS FUNCTION OPTIMIZATION
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COMPLICATED HISTORY V577, 3

local Lipschitz only

needs scale of the noise as an input adapts to noise

HOO

2010
DOO 201
SO0 201 «__
StoS0O0 .5 adapts to smoothness
HCT 5o,
POO I
2015
Sequool
2019

StroquOOL .,

18 B22yua,
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WHAT DOES OUR ALGORITHM BRING? Tl

» Current state-of-the-art needs noise scale as input

® If the noise is actually smaller, we find the optimum slower than we could

e ifthe input happens to be deterministic, we miss learning exponentially fast
» Current state-of-the-artis are complicated META-ALGORITHM

® explicitly running several algorithms that know the smoothness

® VERY complicated analysis, high computational complexity

What is the price to pay for all this adaptivity and minimal assumptions?

‘%’t.‘:ﬁ . . . .

hyper-parameter optimization!
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Assumption 1 For any global optimum x*, there exists v > 0 and p € (0,1) such that
Vh € N, Vo € Pp i+, f(z) > f(z¥) — v,

Definition 1 For anyv > 0 and p € (0,1), the near-optimality dimension’ d(v, p) of f
with respect to the partitioning P and with associated constant C', is

d(v, p) 2 inf {d’ cRT:3C > 1,Yh > 0,N;,(3vph) < Cp—dh},

where Ny (€) is the number of cells P, ; of depth h such that sup,ep, . f(x) > f(2*) — €.
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Let a function in such space have upper- and lower envelope
around x* of the same order, i.e., there exists constants ¢ € (0, 1),
and n > 0, such that for all x € A”:

min(n, cl(x,x™)) < f(x™) — f(x) < l(x, x"). (1)

f(x*) — cl(z, z*)

ES

X

Any function satisfying (1) lies in the gray area and possesses a
lower- and upper-envelopes that are of same order around x™.
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Example of a function with different order in the upper and lower
envelopes, when /(x,y) = |x — y|*:

F(x) = 1— Vx + (=32 + v/x) - (sin(1/x2) + 1)/2

The lower-envelope behaves like a square root whereas the upper

one is quadratic. There is no semi-metric of the form |x — y|* for
which d < 3/2.
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GRILL, V., MUNOS, NIPS 2015
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Assumption 1
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SEQUOOL V42X 77,
Parameters: n, P = {Pp;}
Initialization: Open Py 1. hmax = L@n&n)J.

For h =1 to hpyax
Open L

with largest values f}, ;.

hmax

Output z(n) = argmax fp ;.

2 J cells Py, ; of depth h

as we go deeper, we open less

wh,i:Ph’i cT cells per depth

Number of evaluations:

max

h
1+
h=1 -

hmax

h

hmax

1 -
< 1+ hmax Z E — 1‘|‘hmaxloghmax <n-+1
h=1
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OBSERVATION: The deeper we go, the better optimum we find.

Lemma 2 For any global optimum x* with associated (v,p) as defined in Assumption 1,
for any depth h € |hmax|, if hm—f‘ > Cp~ 4Pl e have Ly, = h, while Ly = 0.

SUMMARY: We go deep enough

MAIN RESULT

Theorem 3 Let W be the standard Lambert W function (see Section 2). For any function f
and one of its global optima x* with associated (v, p), and near-optimality dimension d =
d(v, p), we have, after n rounds, the simple regret of Sequ0OOL bounded by

1 dlog(1/p) n

o Ifd=0, rngupébognJ. o Ifd>0, r, <ve ¢ ( = {@nJ).

For more readability, Corollary 4 uses a lower bound on W (Hoorfar and Hassani, 2008).

Corollary 4 If d > 0, assumptions in Theorem 5 hold and Ln/@ nJ dlog %/C’ > e,

SH
SHE

ra < v (C/(dlog(1/p)))* (log (ndlog(1/p)/C)) |n/logn|”

SUMMARY: d=0->r<p"™ AND d>0->r<n'/d
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SEQUOOL: TRULY EXPONENTIAL RATE TR

100' 10—1
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g_ —— StroqulO0L
0.25- % 1071 —— s
—— UNIFORM
—— Sequ00L
0.001 | | 10-7 L | . . w
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number of evaluations
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Parameters: n, P = {Pp,;} StroquOOL(m= 2°) tradeoffs

Init: Open Po,1 fimax times. - small m: quality estimates
Rmax = b(bg;nH)QJ, Pmax = |1089 (Pmax) |- - big m: we can go deeper

For h =1 to hyax 4 FExploration »
For p = |logs(hmax/h)]| down to 0
Open 2P times the L%J
non-opened cells Py, ; with highest

opening more promising
cells more often

values fj; and given that T}, ; > 2P.

For p € [0 : pmax] € Cross-validation »
Evaluate h, .« times the candidates: sicking up the best point,

z(n,p) = argmax fp;. with n samples
(hai)eTaTh,i >2P

Output z(n) = argmax  f(xz(n,p))
{z(n,p),p€[0:pmax]}

AN

Figure 2: The Stroqu00OL Algorithm
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OBSERVATION: The deeper we go, the better optimum we find.

Lemma 5 For any global optimum x* with associated (v, p) (see Assumption 1), with prob-
ability at least 1 — 6§, for all depths h € H%H, for all p € [0 : [logy(hmax/h)]], i

b\/loi(ffl/é) < vp" and if h}g;‘,x > Cp=4wP)h e have Lpp=h while Lo, = 0.

SUMMARY: We go deep enough

MAIN RESULT

Theorem 6 High-noise regime After n rounds, for any function f and one of its global
optima x* with associated (v, p), and near-optimality dimension denoted for simplicity d =

d(v,p), if b > Vp%/\/log(n3/2/b), the simple regret of StroquO0L obeys

1/2
_ s s | G ) n
n vp + og(n>/2/b) 2ogyn + 17|

SUMMARY: r < n'/(d+2) ...before it was r < n'/d




STROQUOOL: ADAPTATION TO NOISE

simple regret

simple regret
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Figure 3: Bottom right: 'Wrapped-sine function (d > 0). The true range of the noise b

and the range used by HOO and P00 is b. Top: b=0,b=11lett —b=0.1,b=1
middle — b = b =1 right. Bottom: b=5b=0.1 left — b= 1,b = 0.1 middle.




DISCUSSION AND WHAT'S NEXT lrsia

> we sample ~1/h = Zipf law (ex.: the frequency of any word is
inversely proportional to its rank in the frequency table)

» Adaption to smoothness
> Adaptation to noise (no need to provide it as input)
® even to the noise = 0 — deterministic
® deterministic case, exp(-n) for d=0, first exponential rate
® before only possible with very strong assumptions

> Not a panacea: price to pay for minimal assumptions and global
guarantee

® hyper-parameter optimization
» adversarial/stochastic (COLT 2018)
» NEXT: make MCTS for faster by adapting it to noise
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APPENDIX: PROOF SKETCH (250

(a) (b)
f(z(n)) > thmaX i > f(a™) —V,OLhmaXH

DEFINITION: how deep we can go

T'n
v

1
1 hmaxdp/C -3
L fimaxdp/C d1og(1/p) (log< hmaxd )) o
< ,Odp (10g(10g(hmaxdp/0)>> = e 10g< C p) — hmaXdp/C)
.5’[‘;} ](J’




APPENDIX: LAMBERT W FUNCTION V10X 77
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z=f1(ze*) = W (ze*) R

The Lambert W function Our results use the Lambert W function. Solving for the
variable z, the equation A = ze® gives z = W(A). W is multivalued for z < 0. However, in
this paper, we consider z > 0 and W (z) > 0, referred to as the standard W. W cannot be
expressed in terms of elementary functions. Yet, we have W (z) = log (2/log z)+0(1) (Hoor-
far and Hassani, 2008). W has applications in physics and applied mathematics (Corless
et al., 1996).




