Maximum Entropy Semi Supervised Inverse Reinforcement Learning a.k.a. MESSI

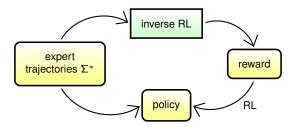
J. Audiffren M. Valko A. Lazaric M. Ghavamzadeh

A B F A B F

Apprenticeship learning (IRL)

Main idea

Learning from demonstrated behaviour (provided by an expert, or teacher).



Why?

In many settings, the reward is very complex to define. Ex : Highway driving

ightarrow How can we force the agent to respect the highway code while traveling as fast as possible ?

・ロト ・回ト ・ヨト ・ヨト

The Maximum entropy principle [Ziebart & al, 2009.]

The Setting :

MDP with linear reward : (S, A, T, f, θ_*)

- $\rightarrow f : S \rightarrow \mathbb{R}^k$ features of each state.
- \rightarrow linear hypothesis : $\mathcal{R}(s) = \theta_*^T f_s$

The IRL problem reduces to find the θ_* encoding the reward the expert abide by.

Maximum entropy principle : Idea : Maximize the log-likelihood of the probability of the expert trajectories

$$heta_* = rg\max_{ heta} \sum \log \mathbf{P}(\xi_i^* | heta)$$

- $\rightarrow\,$ Backward Pass : Given a reward, get expected feature frequency, knowing that a path with greater value is exponentially preferred.
- \rightarrow Forward Pass : Update the reward with a gradient descent step.

・ロト ・回ト ・ヨト ・ヨト … ヨ

Limitations of IRL

- \rightarrow IRL generally needs a lot of expert's data (and experts are very expensive).
- $\rightarrow~$ Is a feature never reached by an expert a bad feature ?
- \rightarrow What about near optimal expert ?

3

イロン イヨン イヨン イヨン

The Semi Supervised approach

Add to this problem

- \rightarrow A set of unlabeled data $\Sigma = (\xi_i)_i$
- \rightarrow A set of expert data $\Sigma^* = (\xi_i)_i$
- \rightarrow A similarity function :

$$s: \Sigma \cup \Sigma^* \times \Sigma \cup \Sigma^* \mapsto [0, 1]$$

SSL

Smoothness assumption

Intrinsically similar trajectories have similar rewards.

The smoothness assumption becomes

$$s(\xi,\xi') \approx 1 \quad \Rightarrow \quad \mathcal{R}(\xi) \approx \mathcal{R}(\xi')$$

э

イロン イヨン イヨン イヨン

Main idea

Add a regularization term to the maximum entropy objective to enforce the smoothness of the reward w.r.t. the similarity function.

SSL

→ Regularization : pairwise penalty

$$PR(\theta|\Sigma) = \frac{1}{2|\Sigma \cup \Sigma^*|} \sum_{\xi,\xi'} s(\xi,\xi') \left(\theta^T (f_{\xi} - f_{\xi'})\right)^2$$

So the objective function becomes :

$$\arg\max_{\theta} \sum_{\xi \in \Sigma^*} \log\left(\mathbf{P}(\xi|\theta) \right) - \lambda PR(\theta|\Sigma)$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

The algorithm

Algorithm 1 pseudocode for MESSI

Input : Σ^* experts trajectories, Σ unlabelled trajectories, similarity function *s*, iteration number *T*, constraint $\theta_{max} > 0$, regularizer λ , random initial reward θ_0

SSL

for *t* = 1 to *T* do

Compute the expected feature count $\hat{f_{\theta_t}}$ with reward θ_t (Value iteration) Update θ :

$$\theta_{t+1} = \theta_t + (f_* - \hat{f_{\theta_t}}) + \frac{\lambda}{\theta_{max}|\Sigma \cup \Sigma^*|} \sum_{\xi,\xi'} s(\xi,\xi') \theta^T (f_{\xi} - f_{\xi'})^2$$

If $\|\theta_{t+1}\| > \theta_{max}$, then

$$\theta_{t+1} = \frac{\theta_{t+1}\theta_{max}}{\|\theta_{t+1}\|}$$

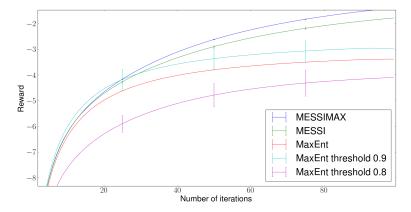
end for

Does it really work ?

Experiments

Highway driving benchmark

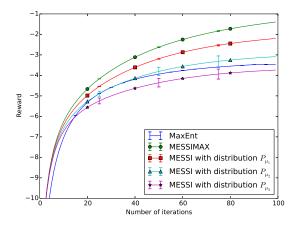
Experiments



 $\rightarrow\,$ Better than MaxEnt, even by aggregating near optimal trajectories

E

・ロト ・回ト ・ヨト ・ヨト



ightarrow Works even for low quality unlabeled data and for generic similarity function

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Conclusion

Strengths

- \rightarrow First implementable SSIRL approach.
- $\rightarrow\,$ Works on small and average-sized problems
- \rightarrow Work with generic similarity function (ex : RBF)
- \rightarrow Work with average quality unlabeled data.

Weaknesses

- \rightarrow Do not scale to big MDP problems. (Future Work : solve the MDP with a model free approach)
- \rightarrow Many approximation to be computationally tractable...
- $\rightarrow\,$...and thus no theoretical guarantees (for now).

Come to see our poster at panel 38 for more details !

・ロット (母) ・ ヨ) ・ ヨ)