Maximum Entropy Semi-Supervised Inverse Reinforcement Learning

Julien Audiffren and Michal Valko and Alessandro Lazaric and Mohammad Ghavamzadeh CMLA, ENS CACHAN and INRIA and ADOBE RESEARCH

Contribution

- MESSI (Maximum Entropy Semi-Supervised Inverse reinforcement learning)
- is a novel algorithm exploiting unsupervised trajectories in apprenticeship learning,
- is a **principled** integration between MaxEnt-IRL and semi-supervised learning techniques,
- **improves** the performance of MaxEnt-IRL and other SSL baselines,
- is **robust** to different choices of similarity function and relatively poor quality unsupervised trajectories.

SSL Apprenticeship Learning

• **Problem:** expert trajectories are expensive to get or not available

Experimental settings

- **Two Benchmarks** : Grid World [Abbeel and Ng, 2004] and Highway Driving [Syed et al., 2008].
- **Unlabeled trajectories** are drawn from three different distributions over policies
 - $P_{u^*} = P(\cdot | \boldsymbol{\theta}^*)$ (expert)
 - $P_1 = P(\cdot | \boldsymbol{\theta}_1)$ (average quality)
 - $P_2 = P(\cdot | \boldsymbol{\theta}_2)$ (very different reward)
- **MESSIMAX:** MESSI with only near expert unlabeled trajectories (upper bound for MESSI performance)
- **Parameters:** MESSI is evaluated with respect to θ_{max} , λ , the number of iteration, the distribution over unlabeled

Background

- Markov decision process (MDP) $\langle S, A, r, p \rangle$
- S state space
- A action space
- $r: S \to \mathbb{R}$ state reward function
- $p: S \times A \to \Delta(S)$ is the stochastic dynamics
- Stochastic Policy $\pi:S\to \Delta(A)$
- Trajectory $\zeta = (s_1, a_1, \dots, a_{T-1}, s_T)$ is sequence of states encountered by an agent in a given interval of time.
- Features $f: S \to \mathbb{R}^d_+$
- Feature count of a trajectory ζ is $\mathbf{f}_{\zeta} = \sum_{t=1}^{T} f(s_t)$
- Linear reward $\exists \theta \in \mathbb{R}^d$ such that $r(s) = \langle \theta, f(s) \rangle$.
- Expert trajectories $\Sigma^* = \{\zeta^* \text{ from expert}\}$, i.e. realizations of the expert policy.
- The objective of apprenticeship learning is to recover the reward followed by the expert.
- **Ill-posed problem:** infinite possible solutions, some uninteresting or bad.
- Solution: Propose a reward, solve the RL problem, compare the trajectory obtained with the expert one, and

• Solution: learn also from unsupervised trajectories and use the structure in the feature counts.

trajectories

Results

Figure 1: Results as a function of number of iterations (left), the distribution μ of the unsupervised data (right), a of the MaxEnt, MESSIMAX and MESSI on the Highway driving dataset (up) and the gridworld (down) dataset.

MESSI

- Integration of unsupervised trajectories in MaxEnt-IRL using a penalty function reflecting the geometry of the trajectories, similar to [Erkan and Altun, 2009], but on the **dual problem** to preserve a low computational complexity.
- Set of expert trajectories $\Sigma^* = \{\zeta_i\}_{i=1}^l$ and unsupervised trajectories $\widetilde{\Sigma} = \{\zeta_j\}_{j=1}^u$.
- Use a similarity function s to measure the distance $s(\zeta, \zeta')$ between any pair of trajectories (ζ, ζ') .
- The pairwise penalty forces similar trajectories to have similar rewards

$$R(\boldsymbol{\theta}|\boldsymbol{\Sigma}) = \frac{1}{2(l+u)} \sum_{\boldsymbol{\zeta},\boldsymbol{\zeta}'\in\boldsymbol{\Sigma}} s\left(\boldsymbol{\zeta},\boldsymbol{\zeta}'\right) (\boldsymbol{\theta}^{\mathsf{T}}(\mathbf{f}_{\boldsymbol{\zeta}}-\mathbf{f}_{\boldsymbol{\zeta}'}))^{2}$$

- New optimization problem penalizes the likelihood of θ by the similarity in unsupervised trajectories

$$\boldsymbol{\theta}^* = \operatorname{argmax} \left(L(\boldsymbol{\theta}|\Sigma^*) - \lambda R(\boldsymbol{\theta}|\Sigma) \right)$$

adjust the reward. Iterate until convergence.

MaxEnt IRL [Ziebart et al., 2008]

Idea: Maximize the log-likelihood of $\boldsymbol{\theta}$ given Σ^*

 $\boldsymbol{\theta}^* = \arg \max_{\boldsymbol{\theta}} \sum_{\boldsymbol{\xi} \in \Sigma^*} \log P(\boldsymbol{\xi}|\boldsymbol{\theta})$

At each iteration, repeat

• **Compute** the probability of trajectories through maximum entropy principle

$$P(\zeta|\boldsymbol{\theta}) \approx \frac{\exp(\boldsymbol{\theta}^{\mathsf{T}} f_{\zeta})}{Z(\boldsymbol{\theta})} \prod_{t=1}^{T} p(s_{t+1}|s_t, a_t),$$

• **Deduce** the expected feature count of the current candidate.

$$\mathbf{f}_t = \sum_{\zeta} P(\zeta | \boldsymbol{\theta}_t) \mathbf{f}_{\zeta} = \sum_{s \in S} \rho_t(s) \mathbf{f}(s)$$

• **Update** the value of $\boldsymbol{\theta}$ with a gradient descent step.

Trade-off : MESSI is based on the original MaxEnt IRL and do not use the Causal Entropy version to preserve a low computational complexity.

References

θ

The MESSI Algorithm

- Input: *l* expert trajectories Σ* = {ζ_i*}^l_{i=1}, *u* unsupervised trajectories Σ̃ = {ζ_j}^u_{j=1}, similarity function *s*, number of iterations *T*, constraint θ_{max}, regularizer λ₀
 Initialization:
- 3: Compute $\{\mathbf{f}_{\zeta_i^*}\}_{i=1}^l$, $\{\mathbf{f}_{\zeta_j}\}_{j=1}^u$ and $\mathbf{f}^* = 1/l \sum_{i=1}^l \mathbf{f}_{\zeta_i^*}$
- 4: Generate a random reward vector $\boldsymbol{\theta}_0$
- 5: for t = 1 to T do
- 6: Compute policy π_{t-1} from $\boldsymbol{\theta}_{t-1}$ (backward pass) $\pi(a|s;\boldsymbol{\theta}) = \sum_{\zeta \in \Sigma_{s,a}} P(\zeta|\boldsymbol{\theta})$
- 7: Compute feature counts \mathbf{f}_{t-1} of π_{t-1} (forward pass) $\mathbf{f} = \sum P(c | \boldsymbol{\theta}) \mathbf{f} = \sum o(c) \mathbf{f}(c)$

$$\mathbf{f}_t = \sum_{\zeta} P(\zeta | \boldsymbol{\theta}_t) \mathbf{f}_{\zeta} = \sum_{s \in S} \rho_t(s) \mathbf{f}(s)$$

8: Update the reward vector as follows

 $\begin{aligned} \boldsymbol{\theta}_{t} \leftarrow \boldsymbol{\theta}_{t-1} + (\mathbf{f}^{*} - \mathbf{f}_{t-1}) \\ &+ \frac{\lambda_{0}}{\theta_{\max}(l+u)} \sum_{\zeta,\zeta' \in \Sigma} s(\zeta,\zeta') \left(\boldsymbol{\theta}_{t-1}^{\mathsf{T}}(\mathbf{f}_{\zeta} - \mathbf{f}_{\zeta'}\right)^{2}). \end{aligned}$ 9: If $\|\boldsymbol{\theta}_{t}\|_{\infty} > \theta_{\max}$, project back by $\boldsymbol{\theta}_{t} \leftarrow \boldsymbol{\theta}_{t} \frac{\theta_{\max}}{\|\boldsymbol{\theta}_{t}\|_{\infty}}$

- Number of iterations. MESSI improves at each iteration (unlike SSIRL). Advantage of MESSIMAX is clear starting from the beginning.
- Proportion of good unsupervised trajectories. Non-relevant distribution (as P_{μ_3}) make MESSI performs worse than MaxEnt-IRL. However, improves quickly with even a few worthy trajectories.

Comparison with EM baseline

- SSIRL Cannot be compared to SSIRL [Valko et al., 2012] because it does not have a stopping criterion
- EM Comparison to semi-supervised baseline inspired by EM [Zhu, 2005] :
- *Maximization step* : using belief on nature of trajectories, solve one iteration of MaxEnt.
- *Expectation step*: Given the current reward, update the belief on the nature of the trajectories.

[Abbeel and Ng, 2004] Abbeel, P. and Ng, A. (2004).Apprenticeship learning via inverse reinforcement learning.In Proceedings of the 21st International Conference on Machine Learning.

[Erkan and Altun, 2009] Erkan, A. and Altun, Y. (2009).
Semi-Supervised Learning via Generalized Maximum Entropy.
In *Proceedings of JMLR Workshop*, pages 209–216. New York University.

[Syed et al., 2008] Syed, U., Schapire, R., and Bowling, M. (2008).
Apprenticeship Learning Using Linear Programming.
In Proceedings of the 25th International Conference on Machine Learning, pages 1032–1039.

[Valko et al., 2012] Valko, M., Ghavamzadeh, M., and Lazaric, A. (2012).
Semi-Supervised Apprenticeship Learning.
In Proceedings of the 10th European Workshop on Reinforcement Learning, volume 24, pages 131–241.

[Zhu, 2005] Zhu, X. (2005).

Semi-supervised learning literature survey.

Technical Report 1530, Computer Sciences, University of Wisconsin-Madison.

[Ziebart et al., 2008] Ziebart, B., Maas, A., Bagnell, A., and Dey, A. (2008).Maximum Entropy Inverse Reinforcement Learning.In Proceedings of the 23rd AAAI Conference on Artificial Intelligence.

10: **end for**

Discussion

- Not semi-supervised classification: Unsupervised trajectories come from the expert herself, another expert(s), near-expert, by agents maximizing different reward functions, or noisy data.
- Similarity functions is more efficient when **hand-crafted** to fit the problem, but still works for baseline like RBF.
- Improves MaxEnt IRL when the similarity function is meaningful and the distribution of unsupervised trajectories is informative.

Figure 2: Comparison between MESSI and EM

Results: For all the respective frequencies of Maximization and Expectation steps, EM performs worse than MESSI (Fig. 2).

