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Problem formulation
For t = 1, 2, . . . , n,

I simultaneously, Learner picks arm It ∈ [K ], (K arms)

I Adversary /environment picks gain gt ∈ [0, 1]K .

I Then, the learner observes gt,It .

Recommend arm Jn hoping Jn = k?.

Objective: Minimizing the probability of misidentification of k?:

Adversarial Stochastic
arbitrary gk,t gk,t sampled i.i.d. from νk

k?g = argmaxk∈[K ] Gk k?sto = argmaxk∈[K ] µk
Gk =

∑n
t=1 gk,t

eadv(n) , P
(
Jn 6= k?g

)
esto(n) , P (Jn 6= k?sto)

maximizes eadv(n) is indifferent to esto(n)
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Worst-case adversarial analysis

State of the art in : Successive Rejects (sr) (Audibert et al,

2010)

• sr can pull arm deterministically

• sr stops to pull some arms (eliminate/reject) during the game

sr can be tricked by an adversary

• The learner needs to use internal randomization

• The learner should be careful about rejecting arm: no
rejection!
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Optimal uniform learner against

Rule: It uniformly at random, returns the estimated best arm.

Theorem (Rule vs. )

For all n, adversarial g,

eadv(g)(n) = O
(

exp

(
− n

HUNIF(g)

))
·

Theorem ( Lower bound)

For any learner, a g1 of complexity Hunif,

eg1(n) = Ω

(
exp

(
− n

HUNIF

))
·

Rule: optimal gap-dependent rates against .
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Gaps and complexities in hindsight

G
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¿Best of both worlds? (BOB)

Existing robust solutions?

esto(n) eadv(g)(n)

sr e
−n

Hsr log K 1

Rule e
−n

HUNIF e
−n

HUNIF

BOB question: A learner performing optimally in both the
stochastic and adversarial cases while not being aware of the

nature of the rewards ?
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¡IMPOSSIBLE BOB!

New notion of complexity

HBOB ,
1

∆(1)
max
k∈[K ]

k

∆(k)
·

Theorem (Lower bound for the BOB challenge)

For any learner, for any HBOB there exists an stochastic problem
with complexity HBOB such that

if esto(n) ≤ 1

64
exp

(
−2048n

HBOB

)
sometimes

=
1

64
exp

(
− 2048n

HSR

√
K

)
,

then there exists an adversarial problem where

eadv(g)(n) ≥ 1

16
·
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Is there still a challenge?

YES! because

Hsr ≤ HBOB ≤ HUNIF.

Why is the BOB question challenging?

I Bias of estimator Ĝk,t ∝
∑t

t′=1 1{It′ = k}gk,t′ (simple average)

I Variance of G̃k,t =
∑t

t′=1
gk,t′
pk,t′

1{It′ = k} (importance weights)

Pull uniformly for too long and incur a large variance of order K
in G̃k,t .

Objective: reduce the variance of the estimators of the best arms
≈ find the best arm
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The P1 algorithm

p1 pulls • the b̂est arm with ‘probability’ 1

• the second b̂est arm with ‘probability’ 1
2

• the third b̂est arm with ‘probability’ 1
3

• and so on...
• the i-th b̂est arm with ‘probability’ 1

i
• and the ŵorst arm with ‘probability’ 1

K
• (and normalize)
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• and the ŵorst arm with ‘probability’ 1

K
• (and normalize)

9/11



The P1 algorithm

p1 pulls • the b̂est arm with ‘probability’ 1

• the second b̂est arm with ‘probability’ 1
2

• the third b̂est arm with ‘probability’ 1
3

• and so on...
• the i-th b̂est arm with ‘probability’ 1

i
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The P1 algorithm

p1 pulls • the b̂est arm with ‘probability’ 1/ logK
• the second b̂est arm with ‘probability’ 1

2 log K

• the third b̂est arm with ‘probability’ 1
3 log K

• and so on...
• the i-th b̂est arm with ‘probability’ 1

i log K

• and the ŵorst arm with ‘probability’ 1
K log K

• (and normalize)
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The P1 algorithm

Allocations

uniform
harmonic

1 2 K

1+1/2+1/3+...+1/K≈logK

W.r.t. Rule, p1 early bets are almost costless!

p1 follows the allocation proportions of sr

p1 achieves the ’best you can wish for ’ (up to log factor) + we
have some experiments
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Thank you!
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