Best of both worlds: Stochastic & adversarial best-arm identification

Yasin Abbasi-Yadkori, Peter Bartlett, Victor Gabillon, Alan Malek, Michal Valko

COLT - 9 July 2018

Objective: Minimizing the probability of misidentification of k^* :

😇 Adversarial 😇	Stochastic
arbitrary $oldsymbol{g}_{k,t}$	$oldsymbol{g}_{k,t}$ sampled i.i.d. from $ u_k$
$k_{g}^{\star} = rg \max_{k \in [K]} G_k$ $G_k = \sum_{t=1}^{n} g_{k,t}$	$k_{sto}^{\star} = rg\max_{k \in [K]} \mu_k$
$e_{adv}(n) riangleq \mathbb{P}\left(J_n eq k_{g}^{\star} ight)$	$e_{\mathrm{sto}}(n) riangleq \mathbb{P}\left(J_n \neq k_{\mathrm{sto}}^{\star} ight)$
$\mathbf{\mathfrak{S}}$ maximizes $e_{adv}(n)$	$_$ is indifferent to $e_{sto}(n)$

Worst-case adversarial analysis 😂

State of the art in ____: Successive Rejects (SR) (Audibert et al, 2010)

- SR can pull arm deterministically
- SR stops to pull some arms (eliminate/reject) during the game

 $_{
m SR}$ can be tricked by an adversary \overline{igodot}

- The learner needs to use internal randomization
- The learner should be careful about rejecting arm: no rejection!

Optimal uniform learner against 😇

RULE: I_t uniformly at random, returns the estimated best arm. **Theorem (Rule vs. \Theta)**

For all n, adversarial g,

$$e_{\mathsf{adv}(g)}(n) = \mathcal{O}\left(\exp\left(-\frac{n}{H_{\mathrm{UNIF}(g)}}\right)\right)$$

Theorem (Lower bound)

For any learner, a g^1 of complexity H_{UNIF} ,

$$e_{g^1}(n) = \Omega\left(\exp\left(-\frac{n}{H_{\text{UNIF}}}\right)\right)$$

RULE: optimal gap-dependent rates against Θ .

Gaps and complexities in hindsight

Gaps and complexities in hindsight

Gaps and complexities in hindsight

¿Best of both worlds? (BOB)

Existing robust solutions?

		$e_{sto}(n)$		$e_{adv(g)}(n)$
SR	 Image: A start of the start of	$e^{\frac{-n}{H_{\mathrm{SR}}\log K}}$	X	1
Rule	X	$e^{\frac{-n}{H_{\text{UNIF}}}}$	 Image: A second s	$e^{\frac{-n}{H_{\text{UNIF}}}}$

BOB question: A learner performing optimally in **both** the stochastic and adversarial cases while <u>not being aware</u> of the nature of the rewards ?

¿Best of both worlds? (BOB)

Existing robust solutions?

BOB question: A learner performing optimally in **both** the stochastic and adversarial cases while <u>not being aware</u> of the nature of the rewards ?

¿Best of both worlds? (BOB)

Existing robust solutions?

BOB question: A learner performing optimally in **both** the stochastic and adversarial cases while <u>not being aware</u> of the nature of the rewards ?

¡IMPOSSIBLE BOB!

New notion of complexity

$$H_{\rm BOB} \triangleq \frac{1}{\Delta_{(1)}} \max_{k \in [K]} \frac{k}{\Delta_{(k)}}.$$

Theorem (Lower bound for the BOB challenge)

For any learner, for any $H_{\rm BOB}$ there exists an stochastic problem with complexity $H_{\rm BOB}$ such that

$$if \quad e_{sto}(n) \leq \frac{1}{64} \exp\left(-\frac{2048n}{H_{BOB}}\right) \stackrel{sometimes}{=} \frac{1}{64} \exp\left(-\frac{2048n}{H_{SR}\sqrt{K}}\right),$$

then there exists an adversarial problem where

$$e_{\mathsf{adv}(g)}(n) \geq rac{1}{16}$$
.

¡IMPOSSIBLE BOB!

New notion of complexity

$$H_{\rm BOB} \triangleq \frac{1}{\Delta_{(1)}} \max_{k \in [K]} \frac{k}{\Delta_{(k)}} \cdot$$

Theorem (Lower bound for the BOB challenge)

For any learner, for any $H_{\rm BOB}$ there exists an stochastic problem with complexity $H_{\rm BOB}$ such that

$$\text{if} \qquad e_{\text{sto}}(n) \leq \frac{1}{64} \exp\left(-\frac{2048n}{H_{\text{BOB}}}\right) \stackrel{\text{sometimes}}{=} \frac{1}{64} \exp\left(-\frac{2048n}{H_{\text{SR}}\sqrt{K}}\right),$$

then there exists an adversarial problem where

$$e_{\mathsf{adv}(g)}(n) \geq rac{1}{16}$$
.

Is there still a challenge?

YES! because

 $H_{\rm SR} \leq H_{\rm BOB} \leq H_{\rm UNIF}.$

Why is the BOB question challenging?

▶ Bias of estimator \$\widehat{G}_{k,t} \propto \sum_{t'=1}^{t} \mathbf{1}\{I_{t'} = k\}g_{k,t'}\$ (simple average)
 ▶ Variance of \$\widetilde{G}_{k,t} = \sum_{t'=1}^{t} \frac{g_{k,t'}}{p_{k,t'}} \mathbf{1}\{I_{t'} = k\}\$ (importance weights)

Pull uniformly for too long and incur a large **variance** of order K in $\widetilde{G}_{k,t}$.

Objective: reduce the variance of the estimators of the best arms \approx find the best arm

P1 pulls • the \widehat{best} arm with 'probability'	1
 the second best arm with 'probability' 	$\frac{1}{2}$
• the third <i>best</i> arm with 'probability'	1
 and so on the i-th <i>best</i> arm with 'probability' 	$\frac{1}{i}$
 and the <i>worst</i> arm with 'probability' (and normalize) 	$\frac{1}{K}$

P1 pulls • the best arm with 'probability' • the second best arm with 'probability' • the third best arm with 'probability' • and so on... • the i-th best arm with 'probability' • and the worst arm with 'probability' • (and normalize)

 $\frac{1}{2}$ $\frac{1}{3}$

 P1 pulls • the best arm with 'probability' • the second best arm with 'probability' 		$\frac{1}{\frac{1}{2}}$
	• the third \widehat{best} arm with 'probability'	$\frac{1}{3}$
	and so on	
	• the i-th <i>best</i> arm with 'probability'	$\frac{1}{i}$
	• and the \widehat{worst} arm with 'probability'	$\frac{1}{\kappa}$
0	(and normalize)	

P1 pulls \circ	• the $\widehat{\textit{best}}$ arm with 'probability'	1
	• the second $\widehat{\textit{best}}$ arm with 'probability'	$\frac{1}{2}$
	• the third $\widehat{\textit{best}}$ arm with 'probability'	$\frac{1}{3}$
	• and so on	-
	• the i-th <i>best</i> arm with 'probability'	$\frac{1}{i}$
•	 and the worst arm with 'probability' 	$\frac{1}{K}$
0	• (and normalize)	

P1 pulls \bullet	• the $\widehat{\textit{best}}$ arm with 'probability'	1
	• the second $\widehat{\textit{best}}$ arm with 'probability'	$\frac{1}{2}$
	• the third $\widehat{\textit{best}}$ arm with 'probability'	$\frac{1}{3}$
•	• and so on	-
•	• the i-th <i>best</i> arm with 'probability'	$\frac{1}{i}$
•	 and the worst arm with 'probability' 	$\frac{1}{K}$
•	 (and normalize) 	

P1 pulls $ullet$ the $\widehat{\mathit{best}}$ arm with 'probability'	$1/\log K$
• the second $\widehat{\textit{best}}$ arm with 'probability'	$\frac{1}{2\log K}$
• the third \widehat{best} arm with 'probability'	$\frac{1}{3\log K}$
 and so on the i-th <i>best</i> arm with 'probability' 	$\frac{1}{i \log K}$
• and the \widehat{worst} arm with 'probability'	$\frac{1}{K \log K}$
- (-

• (and normalize)

W.r.t. Rule, p1 early bets are almost costless!

 $\rm P1$ follows the allocation proportions of $\rm SR$

W.r.t. Rule, p1 early bets are almost costless!

 $\rm P1$ follows the allocation proportions of $\rm SR$

W.r.t. Rule, p1 early bets are almost costless!

 $\rm P1$ follows the allocation proportions of $\rm SR$

W.r.t. Rule, p1 early bets are almost costless!

 $\rm P1$ follows the allocation proportions of $\rm SR$

 ${\rm P1}$ achieves the 'best you can wish for' (up to log factor) + we have some experiments

Thank you!