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Problem formulation

Fort=1,2,...,n,
simultaneously, picks arm I € [K], (K arms)
Adversary @/environment _A_ picks gain g; € [0,1]K.
Then, the learner observes g; |,.

Recommend arm J, hoping J, = k*.

Objective: Minimizing the probability of misidentification of k*:

@ Adversarial @ _A Stochastic _A

arbitrary gy ¢ gkt sampled i.i.d. from v

kj = arg max;¢x) Gk

Gk = {19kt
eadu(n) 2 P (Jp # K7) esto(n) £ P (Jn # Kiio)
@ maximizes e,q,(n) _A s indifferent to eso(n)

ko = argmaxye k) Hk




Worst-case adversarial analysis &

State of the art in _A\ : Successive Rejects (SR) (Audibert et al,
2010)

® SR can pull arm deterministically

® SR stops to pull some arms (eliminate/reject) during the game

SR can be tricked by an adversary @

® The learner needs to use internal randomization

® The learner should be careful about rejecting arm: no
rejection!



Optimal uniform learner against &

RULE: /¢ uniformly at random, returns the estimated best arm.

Theorem (Rule vs. &)

For all n, adversarial g,

n
eadv(g)(n) =0 <exP <_HU\ITF(g)>)'

Theorem (& Lower bound)

For any learner, a g* of complexity Hyxr,

) =9 <exp (‘ Hur;uf ) > '

RULE: optimal gap-dependent rates against ©.
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iBest of both worlds? (BOB)

Existing robust solutions?
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iIMPOSSIBLE BOB!

New notion of complexity

H a 1 max k
BOB = A(l) kelK] A( )

Theorem (Lower bound for the BOB challenge)

For any learner, for any Hpop there exists an stochastic problem
with complexity Hzop such that

. 1 2048n
if  ew(n) < —exp|—
Hsos

then there exists an adversarial problem where



iIMPOSSIBLE BOB!

New notion of complexity

H a 1 max k
BOB = A(l) kelK] A( )

Theorem (Lower bound for the BOB challenge)

For any learner, for any Hpop there exists an stochastic problem
with complexity Hzop such that

if e ( ) < 1 o ( 2048/7) sometlmes 1 e ( 2048n >
—ex « _2048n )
sto 64 P\ " Hoon T T

then there exists an adversarial problem where



Is there still a challenge?

YES! because

Hsr < Hpon < Hunir.

Why is the BOB question challenging?
Bias of estimator C?k,t o< Yot My = k}gk v (simple average)

Variance of Gy, = 3% _; Zi’tj 1{/y = k} (importance weights)

Pull uniformly for too long and incur a large variance of order K
in Gk71_-.

Objective: reduce the variance of the estimators of the best arms
~ find the best arm
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The P1 algorithm

P1 pulls e the best arm with ‘probability’ 1/log K
o the second best arm with ‘probability’ 2101gK
o the third best arm with ‘probability’ ﬁ
e and so on...
e the i-th best arm with ‘probability’ ﬁ
e and the worst arm with ‘probability’ ﬁgK

e (and normalize)



The P1 algorithm

@D uniform
' harmonic

14+1/2+1/3+...4+1/K=logK

Allocations

W.r.t. Rule, pl early bets are almost costless!

p1 follows the allocation proportions of Sk
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The P1 algorithm

the
- uniform
harmonic
of 14+1/2+1/3+...+1/K=logK
and
to
1 2 . K
Allocations

W.r.t. Rule, pl early bets are almost costless!
p1 follows the allocation proportions of Sk

Pl achieves the 'best you can wish for' (up to log factor) + we

have some experiments
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Thank youl!



