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WHAT GIVES?

Stochastic?

Non-stochastic? Adversarial?
P1

Find your best option when the data is
potentially non-stochastic or adversarial!

THE GAME: LEARNER VS ADVERSARY

For t = 1, 2, . . . , n,
I simultaneously, Learner picks arm It ∈ [K],

I / picks gain gt ∈ [0, 1]K .
I Then, the learner observes gt,It .

Recommend arm Jn hoping Jn = k?.

Adversarial Stochastic

arbitrary gk,t gk,t sampled i.i.d. from νk

k?g = arg maxk∈[K]Gk k?STO = arg maxk∈[K] µk
Gk =

∑n
t=1 gk,t

eADV(n) , P
(
Jn 6= k?g

)
eSTO(n) , P (Jn 6= k?STO)

Gaps: n∆g
k ,

{
G(1) −Gk if k 6= k?g,

G(1) −G(2) if k = k?g.

Notions of complexity:

HSR , max
k∈[K]

k

∆2
(k)

and HUNIF ,
K

∆2
(1)

·

OPTIMAL UNIFORM LEARNER
Rule: It uniformly at random.

Th 1 (Rule vs. ). For all n, adversarial g,

eADV(g)(n) = O
(

exp

(
− n

HUNIF(g)

))
·

Th 2 ( Lower bound). For any learner, a g1 of
complexity HUNIF,

eg1(n) = Ω

(
exp

(
− n

HUNIF

))
·

Rule: optimal gap-dependent rates against .

¿BEST OF BOTH WORLDS? (BOB)
Existing robust solutions?

eSTO(n) eADV(g)(n)

SR [1] e
−n

HSR log K 1

Rule e
−n

HUNIF e
−n

HUNIF

BOB question: A learner performing optimally in
both the stochastic and adversarial cases while
not being aware of the nature of the rewards ?

Why is the BOB question challenging?

I Bias of estimator Ĝk,t =
t
∑t

t′=1
1{It′=k}gk,t′∑t

t′=1
1{It′=k}

I Variance of G̃k,t =
∑t

t′=1

gk,t′

pk,t′
1{It′ = k}

Pull uniformly for too long and incur a large
variance of order K in G̃k,t.

¡IMPOSSIBLE BOB!
New notion of complexity

HBOB ,
1

∆(1)
max
k∈[K]

k

∆(k)
·

Th 3 (Lower bound for the BOB challenge). For any
learner, for any HBOB there exists an stochastic prob-
lem with complexity HBOB such that

if eSTO(n) ≤ 1

64
exp

(
−2048n

HBOB

)
,

then there exists an adversarial problem where

eADV(g)(n) ≥ 1

16
·

μ/G

1 2 3 4 5 6

k

1.

2.

G4

arm not pulled enough
by the learner

Δ1

Δ1

adversary changes
the value for
nΔ1/Δ4 rounds

Δ4

DIFFERENT REGIMES

HSR ≤ HBOB ≤ HUNIF.

I Flat regime
μ

1 2 3 4 5 6

k

HSR = HBOB = HUNIF

BOB is achieved by
Rule.

I Linear regime
μ

1 2 3 4 5 6

k

HSR = HBOB =
HUNIF

K

BOB can be achieved
but not by Rule.
We need a new

learner!

I Square-root regime
μ

1 2 3 4 5 6

k

HSR =
HBOB√

2K
=
HUNIF

K

No learner can do
BOB!

THE P1 ALGORITHM

P1 pulls • the b̂est arm with probability 1

• the second b̂est arm with proba 1
2

• the third b̂est arm with probability 1
3

• and so on . . . (and normalize)

For t = 1, 2, . . .

I Sort & rank arms by decreasing G̃·,t−1:
Rank arm k as 〈̃k〉t ∈ [K]a.

I Select It with P (It = k) ,
1

〈̃k〉t logK
·

Recommend, Jt , arg maxk∈[K] G̃k,t.

aBrake arbitrarily any problematic comparisons.

Zipf
Allocations

uniform
harmonic

1 2 K

1+1/2+1/3+...+1/K≈logK

the

of

and
to

W.r.t. Rule, P1 early bets are almost costless!

P1 follows the allocation proportions of SR[1]

THE BYCWF (THE BEST YOU CAN WISH FOR)

Theorem 1 (Upper bounds for P1). For any problems:

I eSTO(n) = O
(

exp

(
− n

HBOB log2(K)

))
I eADV(g)(n) = O

(
exp

(
− n

log(K)HUNIF(g)

))

[1] J.-Y. Audibert, S. Bubeck, and R. Munos. Best-arm
identification in multi-armed bandits. In Conference on
Learning Theory, 2010.

STOCHASTIC CASE EXPERIMENTS

Experimental setup HSR HBOB HUNIF

1. 1 group of bad arms 2000 2000 2000
2. 2 groups of bad arms 1389 2083 3125
3. Geometric prog 5540 5540 11080
4. 3 groups of bad arms 400 500 938
5. Arithmetic prog 3200 3200 24000
6. 2 good, many bad 5000 7692 50000
7. 3 groups of bad arms 4082 5714 12000
8. Square-root gaps 3200 22M 160M

Empirical behavior in the figures mimics the
behavior of the complexities in the table.

http://www.learningtheory.org/colt2010/papers/59Audibert.pdf
http://www.learningtheory.org/colt2010/papers/59Audibert.pdf

