BEST OF BOTH WORLDS: STOCHASTIC & ADVERSARIAL BEST-ARM IDENTIFICATION

YASIN ABBASI-YADKORI, PETER BARTLETT, VICTOR GABILLON, ALAN MALEK & MICHAL VALKO

WHAT GIVES?

Find your best option when the data is

IMPOSSIBLE BOB!

New notion of complexity

$$H_{\text{BOB}} \triangleq \frac{1}{\Delta_{(1)}} \max_{k \in [K]} \frac{k}{\Delta_{(k)}}$$

Th 3 (Lower bound for the BOB challenge). *For any* learner, for any H_{BOB} there exists an stochastic problem with complexity H_{BOB} such that

if
$$e_{\text{STO}}(n) \le \frac{1}{64} \exp\left(-\frac{2048n}{H_{\text{BOB}}}\right)$$
,

THE P1 ALGORITHM

P1 pulls • the \widehat{best} arm with probability

- the second \widehat{best} arm with proba
- the third \widehat{best} arm with probability $\frac{1}{3}$ • and so on ... (and normalize)
- For t = 1, 2, ...
- Sort & rank arms by decreasing $\widetilde{G}_{.,t-1}$: Rank arm k as $\langle k \rangle_t \in [K]^a$. Select I_t with $\mathbb{P}(I_t = k) \triangleq \frac{1}{\sim}$

 $\widetilde{\langle k \rangle}_t \ \overline{\log} K$

potentially non-stochastic or adversarial!

THE GAME: LEARNER VS ADVERSARY

Notions of complexity:

then there exists an adversarial problem where

$$H_{\text{SR}} \triangleq \max_{k \in [K]} \frac{k}{\Delta_{(k)}^2} \quad \text{and} \quad H_{\text{UNIF}} \triangleq \frac{K}{\Delta_{(1)}^2}$$

OPTIMAL UNIFORM LEARNER

Rule: I_t uniformly at random.

Th 1 (Rule vs. Θ). For all n, adversarial g,

 $e_{\mathbf{ADV}(\boldsymbol{g})}(n) = \mathcal{O}\left(\exp\left(-\frac{n}{H_{\mathrm{IINIF}(\boldsymbol{g})}}\right)\right).$

Th 2 (\bigcirc Lower bound). For any learner, a g^1 of complexity H_{UNIF} ,

 $e_{\mathbf{g}^1}(n) = \Omega\left(\exp\left(-\frac{n}{H_{\text{INIE}}}\right)\right).$

Rule: optimal gap-dependent rates against 😇.

¿BEST OF BOTH WORLDS? (BOB)

Existing robust solutions?

Square-root regime

1 2 3 4 5

 μ

learner!

 $H_{\rm SR} = \frac{H_{\rm BOB}}{\sqrt{2K}} = \frac{H_{\rm UNIF}}{K}$

No learner can do

BOB!

. 1 group of bad arms	2000	2000	2000
2. 2 groups of bad arms	1389	2083	3125
B. Geometric prog	5540	5540	11080
1. 3 groups of bad arms	400	500	938
5. Arithmetic prog	3200	3200	24000
5. 2 good, many bad	5000	7692	50000
7. 3 groups of bad arms	4082	5714	12000
8. Square-root gaps	3200	22M	160M

BOB question: A learner performing optimally in **both** the stochastic and adversarial cases while not being aware of the nature of the rewards ?

Why is the BOB question challenging?

Bias of estimator \$\widehat{G}_{k,t} = \frac{t \sum_{t'=1}^{t} \mathbf{1}\{I_{t'}=k\} g_{k,t'}}{\sum_{t'=1}^{t} \mathbf{1}\{I_{t'}=k\}}\$
Variance of \$\widetilde{G}_{k,t} = \sum_{t'=1}^{t} \frac{g_{k,t'}}{p_{k,t'}} \mathbf{1}\{I_{t'}=k\}\$

Pull uniformly for too long and incur a large variance of order K in $G_{k,t}$.

Тне ВУС

Theorem 1 (Upper bounds for P1). *For any problems:*

[1] J.-Y. Audibert, S. Bubeck, and R. Munos. Best-arm identification in multi-armed bandits. In Conference on Learning Theory, 2010.

> Empirical behavior in the figures mimics the behavior of the complexities in the table.