
Normalization of Sequential
Top-Down Tree-to-Word Transducers

Grégoire Laurence1,2, Aurélien Lemay1,2, Joachim Niehren1,3,
S lawek Staworko1,2, and Marc Tommasi1,2

1 Mostrare project, INRIA & LIFL (CNRS UMR8022)
2 University of Lille

3 INRIA, Lille

Abstract. We study normalization of deterministic sequential top-down
tree-to-word transducers (stws), that capture the class of deterministic
top-down nested-word to word transducers. We identify the subclass of
earliest stws (estws) that yield unique normal forms when minimized.
The main result of this paper is an effective normalization procedure
for stws. It consists of two stages: we first convert a given stw to an
equivalent estw, and then, we minimize the estw.

1 Introduction

The classical problems on transducers are equivalence, minimization, learning,
type checking, and functionality [2, 13, 14, 6]. Except for the latter two questions,
one usually studies deterministic transducers because non-determinism quickly
leads to fundamental limitations. For instance, equivalence of non-deterministic
string transducers is known to be undecidable [8]. We thus follow the tradition
to study classes of deterministic transducers. The problems of equivalence, mini-
mization, and learning are often solved using unique normal representation of
transformations definable with a transducer from a given class [9, 7, 5, 11]. Normal-
ization i.e., constructing the normal form of a given transducer, has been studied
independently for various classes, including string transducers [4, 3], top-down
tree transducers [5], and bottom-up tree transducers [7].

In this paper, we study the normalization problem for the class of determinis-
tic sequential top-down tree-to-word transducers (stws). stws are finite state
machines that traverse the input tree in top-down fashion and at every node
produce words obtained by the concatenation of constant words and the results
from processing the child nodes. The main motivation to study this model is
because tree-to-word transformations are better suited to model general xml
transformations as opposed to tree-to-tree transducers [5, 11, 14]. This follows
from the observation that general purpose xml transformation languages, like
xslt, allow to define transformations from xml documents to arbitrary, not nec-
essarily structured, formats. Also, stws capture a large subclass of deterministic
nested-word to word transducers (dn2w), which have recently been the object of
an enlivened interest [6, 15, 16].

2 G. Laurence, A. Lemay, J. Niehren, S. Staworko, and M. Tommasi

Expressiveness of stws suffers from two limitations: 1) every node is visited
exactly once, and 2) the nodes are visited in the fix left-to-right preorder traversal
of the input tree. Consequently, stws cannot express transformations that reorder
the nodes of the input tree or make multiple copies of a part of the input document.
Stws remain, however, very powerful and are capable of: concatenation in the
output, producing arbitrary context-free languages, deleting inner nodes, and
verifying that the input tree belongs to the domain even when deleting parts of
it. These features are often missing in tree-to-tree transducers, and for instance,
make stws incomparable with the class of top-down tree-to-tree transducers [5,
11].

Normal forms of transducers are typically obtained in two steps: output
normalization followed by machine minimization. A natural way of output nor-
malization is (re)arranging output words among the transitions rules so that
the output is produced as soon as possible when reading the input, and thus
transducers producing output in this fashion are called earliest. Our method
subscribes to this approach but we note that it is a challenging direction that
is not always feasible in the context of tree transformations. For instance, it
fails for bottom-up tree-to-tree transducers, where ad-hoc solutions need to be
employed [7].

We propose a natural normal form for stws based on the notion of being
earliest for stws and define the corresponding class of earliest stws (estws)
using easy to verify structural requirements. We present an effective procedure
to convert an stw to an equivalent estw. This process is very challenging and
requires novel tools on word languages. We point out that while this procedure
works in time polynomial in the size of the output estw, we only know a doubly-
exponential upper-bound and a single-exponential lower bound of the size of
the output estw. This high complexity springs from the fact that the output
language of an stw may be an arbitrary context-free language. We also show that
minimization of earliest stws is in ptime thanks to a fundamental property: two
equivalent estws have rules of the same form and allow bisimulation. General
stws are unlikely to enjoy a similar property because their minimization is
np-complete.

Overall, we obtain an effective normalization procedure for stws. Our results
also offer an important step towards a better understanding of the same problem
for dn2ws because stws capture a large class of top-down dn2ws modulo the
standard first-child next-sibling encoding and the conversion from one model to
another can be done efficiently [16]. It is a significant result because there exist
arguments suggesting that arbitrary dn2ws are unlikely to have natural normal
forms [1].

Organization. In Section 2 we present basic notions and introduce stws and
estws. Section 3 introduces important tools on word languages and presents an
stw to estw conversion algorithm. In Section 4 we deal with minimization of
stws and estws. Section 5 summarizes our work and outlines future directions.
Because of space restrictions we omit the proofs, which can be found in the full
version at http://hal.inria.fr/inria-00566291/en/.

Normalization of Sequential Top-Down Tree-to-Word Transducers 3

2 Sequential Top-down Tree-to-word Transducers

A ranked alphabet is a finite set of ranked symbols Σ =
⋃
k≥0Σ

(k) where Σ(k) is
the set of k-ary symbols. We assume that every symbol has a unique arity i.e.,
Σ(i) ∩Σ(j) = ∅ for i 6= j. We use f, g, . . . to range over symbols of non negative
arity and a, b, . . . to range over constants i.e., symbols of arity 0. We write f (k) to
indicate that f ∈ Σ(k) if the arity of f is not known from the context. A tree is a
ranked ordered term over Σ. We use t, t0, t1, . . . to range over trees. For instance,
t0 = f(a, g(b)) is a tree over Σ = {f (2), g(1), a(0), b(0)}.

For a finite set ∆ of symbols by ∆∗ we denote the free monoid on ∆. We
write u · v for the concatenation of two words u and v and ε for the empty word.
We use a, b, . . . to range over ∆ and u, v, w, . . . to range over ∆∗. For a word w
by |w| we denote its length. Given a word u = up · uf · us, up is a prefix of u, uf
a factor of u, and us a suffix of u. The longest common prefix of a nonempty set
of words W , denoted lcp(W), is the longest word u that is a prefix of every word
in W . Analogously, we define the longest common suffix lcs(W).

Definition 1. A deterministic sequential top-down tree-to-word transducer
(stw) is a tuple M = (Σ,∆,Q, init , δ), where Σ is a ranked alphabet of in-
put trees, ∆ is a finite alphabet of output words, Q is a finite set of states,
init ∈ ∆∗ ·Q ·∆∗ is the initial rule, δ is a partial transition function from Q×Σ
to (∆ ∪Q)∗ such that if δ(q, f (k)) is defined, then it has exactly k occurrences
of elements from Q. By stws we denote the class of deterministic sequential
top-down tree-to-word transducers.

In the sequel, if u0 · q0 ·u1 is the initial rule, then we call q0 the initial state. Also,
we often view δ as a set of transition rules i.e., a subset of Q×Σ × (∆ ∪Q)∗,
which allows us to quantify over δ. The size of the stw M is the number of its
states and the lengths of its rules, including the lengths of words used in the
rules. The semantics of the stw M is defined with the help of auxiliary partial
functions Tq (for q ∈ Q), recursively defined on the structure of trees as follows:

Tq(f(t1, . . . , tk)) =


u0 · Tq1(t1) · u1 · . . . · ·Tqk(tk) · uk,

if δ(q, f) = u0 · q1 · u1 . . . · qk · uk,

undefined, if δ(q, f) is undefined.

The transformation TM defined by M is a partial function mapping trees over
Σ to words over ∆ defined by TM (t) = u0 · Tq0(t) · u1, where init = u0 · q0 · u1.
Two transducers are equivalent iff they define the same transformation.

Example 1. We fix the input alphabet Σ = {f (2), g(1), a(0)} and the output
alphabet ∆ = {a, b, c}. The stw M1 has the initial rule q0 and the following
transition rules:

δ(q0, f) = q1 · ac · q1, δ(q1, g) = q1 · abc, δ(q1, a) = ε.

4 G. Laurence, A. Lemay, J. Niehren, S. Staworko, and M. Tommasi

It defines the transformation TM1
(f(gm(a), gn(a))) = (abc)mac(abc)n, where

m,n ≥ 0, and TM1 is undefined on all other input trees. The stw M2 has the
initial rule p0 and these transition rules:

δ(p0, f) = p1 · p3 · ab, δ(p1, g) = a · p2, δ(p2, g) = ab · p3, δ(p3, g) = p3,

δ(p0, a) = ba, δ(p1, a) = ε, δ(p2, a) = ε, δ(p3, a) = ε.

Now, TM2
(a) = ba and for n ≥ 0, the result of TM2

(f(gm(a), gn(a)) is ab for
m = 0, aab for m = 1, and aabab for m ≥ 2; TM2 is undefined for all other input
trees. Note that p3 is a deleting state: it does not produce any output but allows
to check that the input tree belongs to the domain of the transducer. ut

In the sequel, to simplify notation we assume every state belongs to exactly one
transducer, and so Tq above is defined in unambiguous manner. We consider only
trimmed stws i.e., transducers where all states define a nonempty transformation
and are accessible from the initial rule. Also, by domq we denote the set dom(Tq),
the domain of Tq i.e., the set of trees on which Tq is defined, and by Lq the range of
Tq i.e., the set of words returned by Tq. For instance, domq0 = {f(gm(a), gn(a) |
m,n ≥ 0} and Lq0 = (abc)∗ac(abc)∗. We observe that domq is a regular tree
language and Lq is a context-free word language (cfl).

Next, we introduce the notion of being earliest that allows us to identify
normal forms of transformations definable with stws. It is a challenging task
because the notion of being earliest needs to be carefully crafted so that every
transducer can be made earliest. Take, for instance, the transformation turn that
takes a tree over Σ = {a(1), b(1),⊥(0)} and returns the sequence of its labels in
the reverse order e.g., turn(a(b(b(⊥)))) = bba. It is definable with a simple stw.

δ(qturn , a) = qturn · a, δ(qturn , b) = qturn · b, δ(qturn ,⊥) = ε.

One way to view the transformation is a preorder traversal of the input tree that
produces one output word upon entering the node and another word prior to
leaving the node. When analyzing turn from this perspective, the earliest moment
to produce any output is when the control reaches ⊥, and in fact, the whole
output can be produced at that point because all labels have been seen. This
requires storing the label sequence in memory, which is beyond the capabilities
of a finite state machine, and thus, turn cannot be captured with a transducer
satisfying this notion of being earliest.

We propose a notion of being earliest that is also based on preorder traversal
but with the difference that both output words are specified on entering the
node and the output of a node is constructed right before leaving the node.
Intuitively, we wish to push up all possible factors in the rules. Clearly, the stw
above satisfies the condition. We remark that in some cases the output words
in the rule can be placed in several positions, e.g. the rule δ(q1, g) = q1 · abc in
M1 (Examples 1) can be replaced by δ(q1, g) = abc · q1 without changing the
semantics of M1. Consequently, we need an additional requirement that resolves
this ambiguity: intuitively, we wish to push left the words in a rule as much as
possible.

Normalization of Sequential Top-Down Tree-to-Word Transducers 5

Definition 2. An stw M = (Σ,∆,Q, init , δ) is earliest (estw) iff the following
two conditions are satisfied:

(E1) lcp(Lq) = ε and lcs(Lq) = ε for every state q,
(E2) lcp(Lq0 · u1) = ε for the initial rule u0 · q0 · u1 and for every transition

δ(q, f) = u0 ·q1 · . . . ·qk ·uk and 1 ≤ i ≤ k we have lcp(Lqi ·ui · . . . ·Lqk ·uk) = ε.

Intuitively, the condition (E1) ensures that no factor can be pushed up in the
traversal and (E2) ensures that no factor can be pushed left. We note that (E1)
and (E2) can be efficiently checked in an stw because we need only to check
that the results of lcp and lcs are ε. The main contribution of this paper follows.

Theorem 1. For every stw there exists a unique minimal equivalent estw.

The proof consists of an effective procedure that works in two stages: In the
first stage we normalize the outputs i.e., from the input stw we construct an
equivalent estw, and in the second stage we minimize the obtained estw. The
first stage is, however, quite complex as illustrated in the following example.

Example 2 (contd. Example 1). M1 is not earliest because (E1) is not satisfied at
q0: every word of Lq0 = (abc)∗ac(abc)∗ begins with a i.e., lcp(Lq0) = a, and ends
with c i.e., lcs(Lq0) = c. Consequently, we need to push up these two symbols
to the new initial rule a · q′0 · c, but we also need to retract them from the rule
δ(q0, f) = q1 · ac · q1 producing a new state q′0 and new rules for this state.
Essentially, we need to push the symbol a to the left through the first occurrence
of q1 and push the symbol c to the right through the second occurrence of q1.
Pushing symbols through states produces again new states with rules obtained
by reorganizing the output words. Finally, we obtain

δ′(q′0, f) = q′1 · q′′1 , δ′(q′1, g) = bca · q′1, δ′(q′′1 , g) = cab · q′′1 , δ′(q′1, a) = δ′(q′′1 , a) = ε.

M2 is not earliest because (E2) is not satisfied by δ(p0, f) = p1 · p3 · ab: every
word produced by this rule starts with a. First, we push the word ab through the
state p3, and then we push the symbol a through the state p1. Pushing through
p3 is easy because it is a deleting state and the rules do not change. Pushing
through p1 requires a recursive push through the states of the rules of p1 and
this process affects the rules of p2. Finally, we obtain an estw with the initial
rule p′0 and the transition rules

δ′(p′0, f) = a · p′1 · b · p′3, δ′(p′1, g) = a · p′2, δ′(p′2, g) = ba · p′3, δ′(p′3, g) = p′3,

δ′(p′0, a) = ba, δ′(p′1, a) = ε, δ′(p′2, a) = ε, δ′(p′3, a) = ε. ut

3 Output Normalization

The first phase of normalization of an stw consists of constructing an equivalent
estw, which involves changing the placement of the factors in the rules of the
transducer and deals mainly with the output. Consequently, we begin with several
notions and constructions inspired by the conditions (E1) and (E2) but set in a
simpler setting of word languages. We consider only nonempty languages because
in trimmed stws the ranges of the states are always nonempty.

6 G. Laurence, A. Lemay, J. Niehren, S. Staworko, and M. Tommasi

3.1 Reducing Languages

Enforcement of (E1) corresponds to what we call constructing the reduced
decomposition of a language. A nonempty language L is reduced iff lcp(L) = ε and
lcs(L) = ε. Note that the assumption that we work with a nonempty language
is essential here. Now, take a nonempty language L, that is not necessarily
reduced. We decompose it into its reduced core Core(L) and two words Left(L)
and Right(L) such that Core(L) is reduced and

L = Left(L) · Core(L) · Right(L). (1)

We observe that different decompositions are possible. For instance, L = {a, aba}
has two decompositions L = a · {ε, ba} · ε and L = ε · {ε, ab} · a. We resolve the
ambiguity by choosing the former decomposition because it is consistent with
(E1) and (E2) which indicate to push to the left. Formally, Left(L) = lcp(L) and
Right(L) = lcs(L′), where L = Left(L) ·L′. The reduced core Core(L) is obtained
from (1). As an example, the reduced decomposition of Lq0 = (abc)∗ac(abc)∗

from Example 1 is Left(Lq0) = a, Right(Lq0) = c, and Core(Lq0) = (bca)∗(cba)∗.

3.2 Pushing Words Through Languages

In this subsection, we work with nonempty and reduced languages only. Condition
(E2) introduces the problem that we call pushing words through languages. To
illustrate it, suppose we have a language L = {ε, a, aa, aaab} and a word w = aab,
which together give L · w = {aab, aaab, aaaab, aaabaab}. The goal is to find the
longest prefix v of w such that L · w = v · L′ · u, where w = v · u and L′ is some
derivative of L. Intuitively speaking, we wish to push (a part of) the word w
forward i.e., from right to left, through the language L. In the example above,
the solution is v = aa, L′ = {ε, a, aa, abaa}, and u = b (note that L′ is different
from L). In this section, we show that this process is always feasible and for cfls
it is constructive.

The result of pushing a word w through a language L will consist of three
words: push(L,w) the longest part of w that can be pushed through L, rest(L,w)
the part that cannot be pushed through, and offset(L,w) a special word that
allows to identify the corresponding derivative of L. There are three classes of
languages that need to be considered, which we present next together with an
outline of how the pushing is done.

The first class contains only the trivial language L = {ε} e.g., the range of
the state p3 of M2 in Example 1. This language allows every word to be pushed
through and it never changes in the process. For instance, if w0 = ab, then
push(Lp3 , w0) = ab, rest(Lp3 , w0) = ε, and offset(Lp3 , w0) = ε.

The second class consists of non-trivial periodic languages, essentially lan-
guages contained in the Kleene closure of some period word. An example is
Lq1 = (abc)∗ = {ε, abc, abcabc, . . .} whose period is abc. Periodic languages allow
to push multiplicities of the period and then some prefix of the period e.g., if we
take w1 = abcabcaba, then push(Lq1 , w1) = abcabcab and rest(Lq1 , w1) = a. The
offset here is the corresponding prefix of the period: offset(Lq1 , w1) = ab.

Normalization of Sequential Top-Down Tree-to-Word Transducers 7

The third class contains all remaining languages i.e., non-trivial non-periodic
languages. Interestingly, we show that for a language in this class there exists a
word that is the longest word that can be pushed fully through the language, and
furthermore, every other word that can be pushed through is a prefix of this word.
For instance, for Lp1 = {ε, a, aab} from Example 1, aa is the longest word that
can be pushed through. If we take w2 = ab, then we get push(Lp1 , w2) = a and
rest(Lp1 , w2) = b. Here, the offset is the prefix of aa that has been already pushed
through: offset(Lp1 , w2) = a. Note that this class also contains the languages
that do not permit any pushing through e.g., Lp0 = {ba, ab, aab} does not allow
pushing through because it contains two words that start with a different symbol.

We now define formally the pushing process. First, for L ⊆ ∆∗ we define the
set of words that can be pushed fully through L:

Shovel(L) = {w ∈ ∆∗ | w is a common prefix of L · w}.

For instance, Shovel(Lp1) = {ε, a, aa} and Shovel(Lq0) = (abc)∗ · {ε, a, ab}. We
note that Shovel({ε}) = ∆∗ and Shovel(L) always contains at least one element
ε because L is assumed to be nonempty. Also, as we prove in appendix, Shovel(L)
is prefix-closed and totally ordered by the prefix relation.

Next, we define periodic languages (cf. [12]). A language L ⊆ ∆∗ is periodic iff
there exists a nonempty word v ∈ ∆∗, called a period of L, such that L ⊆ v∗. A
word w is primitive if there is no v and n ≥ 0 such that w = vn. Recall from [12]
that every non-trivial periodic language L has a unique primitive period, which
we denote Period(L). For instance, the language {ε, abab, abababab} is periodic
and its primitive period is ab; abab is also its period but not primitive. In the
sequel, by Prefix (w) we denote the set of prefixes of the word w.

Proposition 1. Given a reduced and non-trivial language L, Shovel(L) is infi-
nite iff L is periodic. Furthermore, if L is periodic then Shovel(L) = Period(L)∗ ·
Prefix (Period(L)).

This result and the observations beforehand lead to three relevant cases in the
characterisation of Shovel(L) for a language L.

0o L = {ε} (trivial language), and then Shovel(L) = ∆∗,
1o L is periodic, L 6= {ε}, and then Shovel(L) = Period(L)∗ ·Prefix (Period(L)).
2o L is non-periodic, and Shovel(L) = Prefix (v) for some v ∈ Shovel(L).

Now, suppose we wish to push a word w ∈ ∆∗ through a language L ⊆ ∆∗ and
let s = max≤prefix

(Prefix (w) ∩ Shovel(L)) and w = s · r. We define push(L,w),
rest(L,w), and offset(L,w) depending on the class L belongs to:

0o L = {ε}: push(L,w) = w, rest(L,w) = ε, and offset(L,w) = ε.
1o L is non-trivial and periodic: s = Period(L)k · o for some (maximal) proper

prefix o of Period(L), and we assign push(L,w) = s, rest(L,w) = r, and
offset(L,w) = o.

2o L is non-periodic: push(L,w) = s, rest(L,w) = r, and offset(L,w) = s.

Offsets play a central role in the output normalization procedure, which is feasible
thanks to the following result.

Proposition 2. The set {offset(L,w) | w ∈ ∆∗} is finite for any reduced L.

8 G. Laurence, A. Lemay, J. Niehren, S. Staworko, and M. Tommasi

3.3 Pushing Words Backwards

Until now, we have considered the problem of pushing a word through a language
from right to left. However, in Example 1 if we consider the second occurrence of
q1 in the rule δ(q0, f) = q1 · ac · q1, we realize that pushing words in the opposite
direction needs to be investigated as well. These two processes are dual but before
showing in what way, we present a natural extension of the free monoid ∆∗ to a
pregroup (or groupoid) G∆. It allows to handle pushing in two directions in a
unified manner and simplifies the output normalization algorithm.

A pregroup of words over ∆ is the set G∆ = ∆∗∪{w−1 | w ∈ ∆+}, where w−1

is a term representing the inverse of an nonempty word w. This set comes with two
operators, a unary inverse operator: (w)−1 = w−1, ε−1 = ε, and (w−1)−1 = w for
w ∈ ∆∗, and a partial extension of the standard concatenation that satisfies the
following equations (complete definition in appendix): w−1 ·w = ε and w ·w−1 = ε
for w ∈ ∆∗, and v−1 ·u−1 = (uv)−1 for u, v ∈ ∆∗. We note that some expressions
need to be evaluated diligently e.g., ab · (cb)−1 · cd = ab · b−1 · c−1 · cd = ad, while
some are undefined e.g., ab · a−1. In the sequel, we use w, u, v, . . . to range over
∆∗ only and z, z1, . . . to range over elements of G∆.

Now, we come back to pushing a word w backwards through L, which consists
of finding u · v = w and L′ such that w · L = u · L′ · v. We view this process
as pushing the inverse w−1 through L i.e., we wish to find u · v = w such that
L · w−1 = v−1 · L′ · u−1 because then L · v−1 = v−1 · L′, and consequently,
w · L = (u · v) · (v−1 · L′ · v) = u · L′ · v.

But to define pushing backwards more properly we use another perspective
based on the standard reverse operation of a word e.g., (abc)rev = cba. Namely,
pushing w backwards through L is essentially pushing wrev through Lrev because
(w·L)rev = Lrev·wrev and if Lrev·wrev = v0·L0·u0, then w·L = urev0 ·Lrev

0 ·vrev0 . Thus
push(L,w−1) = (push(Lrev, wrev)rev)−1, rest(L,w−1) = (rest(Lrev, wrev)rev)−1,
and offset(L,w−1) = (offset(Lrev, wrev)rev)−1.

Now, the main condition of pushing words through languages is: for every L
and z ∈ G∆ we have L ·z = push(L, z) ·(offset(L, z)−1 ·L ·offset(L, z)) ·rest(L, z).
Because the output normalization procedure works on stws and not languages,
to prove its correctness we need a stronger statement treating independently
every word of the language.

Proposition 3. Given a reduced and nonempty language L ⊆ ∆∗ and z ∈ G∆,
for any word u ∈ L

u · z = push(L, z) · (offset(L, z)−1 · u · offset(L, z)) · rest(L, z).

3.4 Output Normalization Algorithm

We fix an stw M = (Σ,∆,Q, init , δ) and introduce the following macros:

L̂q = Core(Lq), Left(q) = Left(Lq), Right(q) = Right(Lq),

push(q, z) = push(L̂q, z), offset(q, z) = offset(L̂q, z), rest(q, z) = rest(L̂q, z).

Normalization of Sequential Top-Down Tree-to-Word Transducers 9

Also, let Offsets(q) = {offset(q, z) | z ∈ G∆} and note that by Proposition 2 it is
finite. The constructed stw M ′ = (Σ,∆,Q′, init ′, δ′) has the following states

Q′ = {〈q, w〉 | q ∈ Q, w ∈ Offsets(q)}.

Our construction ensures that TM = TM ′ and for every q ∈ Q, every z ∈
Offsets(q), and every t ∈ domq

T〈q,z〉(t) = z−1 · Left(q)−1 · Tq(t) · Right(q)−1 · z

If init = u0 · q0 · u1, then init ′ = u′0 · q′0 · u′1, where u′0, u′1, and q′0 are calculated
as follows:

1: v := Right(q0) · u1
2: q′0 := 〈q0, offset(q0, v)〉
3: u′0 := u0 · Left(q0) · push(q0, v)
4: u′1 := rest(q0, v)

For a transition rule δ(p, f) = u0 ·p1 ·u1 · . . . ·uk−1 ·pk ·uk and any z ∈ Offsets(p)
we introduce a rule δ′(〈p, z〉, f) = u′0 · p′1 · u′1 · . . . · u′k−1 · p′k · u′k, where u′0, . . . , u

′
k

and p′1, . . . p
′
k are calculated as follows:

1: zk := Right(pk) · uk · Right(p)−1 · z
2: for i := k, . . . , 1 do
3: u′i := rest(pi, zi)
4: p′i := 〈pi, offset(pi, zi)〉
5: zi−1 := Right(pi−1) · ui−1 · Left(pi) · push(pi, zi)
6: u′0 := z−1 · Left(p)−1 · z0

where (for convenience of the presentation) we let Right(p0) = ε. We remark that
not all states in Q′ are reachable from the initial rule and in fact the conversion
procedure can identify the reachable states on the fly. This observation is the
basis of a conversion algorithm that is polynomial in the size of the output.

Example 3. We normalize the stw M1 from Example 1. The initial rule q0
becomes a · 〈q0, ε〉 ·c with Left(q0) = a and Right(q0) = c being pushed up from q0
but with nothing pushed through q0. The construction of the state 〈q0, ε〉 triggers
the normalization algorithm for the rule δ(q0, f) = q1 · ac · q1 with Left(q0) = a
and Right(q0) = c to be retracted from left and right side resp. (and nothing
pushed through since z = ε). This process can be viewed as a taking the left hand
side of the original rule with the inverses of retracted words a−1 ·q1 ·ac·q1 ·c−1 and
pushing words forward as much as possible, which gives a−1 · q1 ·ac · c−1 · 〈q1, c−1〉
and then a−1 ·a ·〈q1, a〉·〈q1, c−1〉. This gives δ′(〈q0, ε〉, f) = 〈q1, a〉·〈q1, c−1〉. Note
that while Offsets(q1) = {(bc)−1, c−1, ε, a, ab}, only two states are constructed.

Next, we need to construct rules for the new state 〈q1, a〉 with z = a and
Left(q1) = Right(q1) = ε. We start with the rule δ(q1, a) = ε and to its left hand
side we add a−1 at the beginning and a at its end: a−1 · ε · a = ε, which yields
the rule δ′(〈q1, a〉, a) = ε. Now, for the rule δ(q1, g) = q1 · abc we obtain the

10 G. Laurence, A. Lemay, J. Niehren, S. Staworko, and M. Tommasi

expression a−1 · q1 · abca. Recall that Lq1 = (abc)∗ is a periodic language, and so
push(q1, abca) = abca, rest(q1, abca) = ε, and offset(q1, abca) = a. Consequently,
we obtain the rule δ′(〈q1, a〉, g) = bca · 〈q1, a〉. Here, it is essential to use the offsets
to avoid introducing a redundant state 〈q1, abca〉 and entering an infinite loop.
Similarly, we obtain: δ′(〈q1, c−1〉, g) = cab · 〈q1, c−1〉 and δ′(〈q1, c−1〉, a) = ε. ut

Theorem 2. For an stw M let M ′ be the stw obtained with the method
described above. Then, M ′ is equivalent to M and satisfies (E1) and (E2).
Furthermore, M ′ can be constructed in time polynomial in the size M ′, which is
at most doubly-exponential in the size of M .

Because of space limitations, the details on complexity have been omitted and
can be found in the full version available online.

3.5 Exponential Lower Bound

First, we show that the size of a rule may increase exponentially.

Example 4. For n ≥ 0 define an stwMn over the input alphabet Σ = {f (2), a(0)}
with the initial rule q0, and these transition rules (with 0 ≤ i < n):

δ(qi, f) = qi+1 · qi+1, δ(qn, a) = a.

The transformation defined by Mn maps a perfect binary tree of height n to a
string a2

n

. Mn is not earliest. To make it earliest we need to replace the initial
rule by a2

n · q0(x0) and the last transition rule by δ(qn, a) = ε. ut
The next example shows that also the number of states may become exponential.

Example 5. For n ≥ 0 and take the stw Nn with Σ = {g(1)1 , g
(1)
0 , a

(0)
1 , a

(0)
0 }, the

initial rule q0, and these transition rules (with 0 ≤ i < n):

δ(qi, g0) = qi+1, δ(qn, a0) = ε,

δ(qi, g1) = qi+1 · a2
i

, δ(qn, a1) = a2
n

·#.

While the size of this transducer is exponential in n, one can easily compress the
exponential factors a2

i

and obtain an stw of size linear in n (cf. Example 4). Mn

satisfies (E1) but it violates (E2), and defines the following transformation.

TNn
= {(gb0(gb1(. . . gbn−1

(a0) . . .)), ab) | b = (bn−1, . . . , b0)2} ∪
{(gb0(gb1(. . . gbn−1(a1) . . .)), a2

n

·# · ab) | b = (bn−1, . . . , b0)2},

where (bn−1, . . . , b0)2 =
∑
i bi ∗ 2i. The normalized version N ′n has the initial rule

〈q0, ε〉 and these transition rules:

δ′(〈qi, aj〉, g0) = 〈qi+1, a
j〉, δ′(〈qn, ak〉, a0) = ε,

δ′(〈qi, aj〉, g1) = a2
i

· 〈qi+1, a
j+2i〉, δ′(〈qn, ak〉, a1) = a2

n−k#ak,

where 0 ≤ i < n, 0 ≤ j < 2i, and 0 ≤ k < 2n. We also remark that N ′n is the
minimal estw that recognises TNn

. ut

Normalization of Sequential Top-Down Tree-to-Word Transducers 11

4 Minimization

In this section we investigate the problem of minimizing the size of a transducer.
Minimization of estws is simple and relies on testing the equivalence of estws

known to be in ptime [16]. For an estwM the minimization procedure constructs
a binary equivalence relation ≡M on states such that q ≡M q′ iff Tq = Tq′ . The
result of minimization is the quotient transducer M/≡M

obtained by choosing
in every equivalence class C of ≡M exactly one representative state q ∈ C, and
then replacing in rules of M every state of C by q.

To show that the obtained estw is minimal among all estws defining the
same transformation, we use an auxiliary result stating that all estws defining
the same transformation use rules with the same distribution of the output words
and allow bisimulation.

A labeled path is a word over
⋃
k>0Σ

(k) × {1, . . . , k}, which identifies a node
in a tree together with the labels of its ancestors: ε is the root node and if a
node π is labeled with f , then π · (f, i) is its i-th child. By paths(t) we denote
the set of labeled paths of a tree t. For instance, for t0 = f(a, g(b)) we get
paths(t0) = {ε, (f, 1), (f, 2), (f, 2) · (g, 1)}. We extend the transition function δ to
identify the state reached at a path π: δ(q, ε) = q and δ(q, π · (f, i)) = qi, where
δ(q, π) = q′ and δ(q′, f) = u0 · q1 · u1 · . . . · qk · uk. Now, the lemma of interest.

Lemma 1. Take two estws M = (Σ,∆,Q, init , δ) and M ′ = (Σ,∆,Q′, init ′, δ′)
defining the same transformation T = TM = TM ′ and let init = u0 · q0 · u1 and
init ′ = u′0 · q′0 ·u′1. Then, u0 = u′0 and u1 = u′1, and for every π ∈ paths(dom(T)),
we let q = δ(q0, π) and q′ = δ′(q′0, π), and we have

1. Tq = Tq′ ,
2. δ(q, f) is defined if and only if δ′(q′, f) is, for every f ∈ Σ, and
3. if δ(q, f) = u0 · q1 · u1 · . . . · qk · uk and δ′(q′, f) = u′0 · q′1 · u′1 · . . . · q′k · u′k, then

ui = u′i for 0 ≤ i ≤ k.

The proof is inductive and relies on properties (E1) and (E2), and the determin-
ism of the transducers. We show the correctness of our minimization algorithm
by observing that it produces an estw whose size is smaller than the input one,
and Lemma 1 essentially states that the result of minimization of two equivalent
transducers is the same transducer (modulo state renaming). This argument also
proves Theorem 1. We also point out that Lemma 1 (with M = M ′) allows to
devise a simpler and more efficient minimization algorithm along the lines of the
standard dfa minimization algorithm [10].

Theorem 3. Minimization of estws is in ptime.

In stws the output words may be arbitrarily distributed among the rules,
which is the main pitfall of minimizing general stws. This difficulty is unlikely
to be overcome as suggested by the following result.

Theorem 4. Minimization of stws i.e., deciding whether for an stw M and
k ≥ 0 there exists an equivalent stw M ′ of size at most k, is np-complete.

12 G. Laurence, A. Lemay, J. Niehren, S. Staworko, and M. Tommasi

5 Conclusions and Future Work

We have presented an effective normalization procedure for stws, a subclass of
top-down tree-to-word transducers closely related to a large subclass of nested-
word to word transducers. One natural continuation of this work is find whether it
can be extended to a Myhill-Nerode theorem for stws, and then, to a polynomial
learning algorithm. Also, the question of exact complexity of the normalization
remains open. Finally, the model of stws can be generalized to allow arbitrary
non-sequential rules and multiple passes over the input tree.

References

1. Alur, R., Kumar, V., Madhusudan, P., Viswanathan, M.: Congruences for visibly
pushdown languages. In: Automata, Languages and Programming. LNCS 3580
(2005) 1102–1114

2. Berstel, J., Boasson, L.: Transductions and context-free languages. Teubner
Studienbucher (1979)

3. Choffru, C.: Contribution à l’étude de quelques familles remarquables de fonctions
rationnelles. PhD thesis, Université de Paris VII (1978)

4. Choffrut, C.: Minimizing subsequential transducers: a survey. Theoretical Computer
Science 292(1) (2003) 131–143

5. Engelfriet, J., Maneth, S., Seidl, H.: Deciding equivalence of top-down XML
transformations in polynomial time. Journal of Computer and System Science
75(5) (2009) 271–286

6. Filiot, E., Raskin, J.F., Reynier, P.A., Servais, F., Talbot, J.M.: Properties of
visibly pushdown transducers. In: Mathematical Foundations of Computer Science
(MFCS). LNCS 6281 (2010) 355–367

7. Friese, S., Seidl, H., Maneth, S.: Minimization of deterministic bottom-up tree
transducers. In: Developments in Language Theory (DLT). LNCS 6224 (2010)
185–196

8. Griffiths, T.V.: The unsolvability of the equivalence problem for lambda-free
nondeterministic generalized machines. Journal of the ACM 15(3) (1968) 409–413

9. Gurari, E.M.: The equivalence problem for deterministic two-way sequential trans-
ducers is decidable. SIAM Journal on Computing 11(3) (1982) 448–452

10. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation. 2nd edn. Addison Wesley (2001)

11. Lemay, A., Maneth, S., Niehren, J.: A learning algorithm for top-down xml
transformations. In: ACM Symposium on Principles of Database Systems (PODS).
(2010) 285–296

12. Lothaire, M., ed.: Combinatorics on Words. 2nd edn. Cambridge Mathematical
Library. Cambridge University Press (1997)

13. Maneth, S.: Models of Tree Translation. PhD thesis, Leiden University (2003)
14. Martens, W., Neven, F., Gyssens, M.: Typechecking top-down XML transformations:

Fixed input or output schemas. Information and Computation 206(7) (2008) 806–
827

15. Raskin, J.F., Servais, F.: Visibly pushdown transducers. In: Automata, Languages
and Programming. LNCS 5126 (2008) 386–397

16. Staworko, S., Laurence, G., Lemay, A., Niehren, J.: Equivalence of nested word
to word transducers. In: Fundamentals of Computer Theory (FCT). LNCS 5699
(2009) 310–322

Normalization of Sequential Top-Down Tree-to-Word Transducers 13

A Appendix

A.1 Proof of Proposition 1

Below we present an alternative characterization of periodic languages which will
be useful later on. This result is a direct consequence of Proposition 1.3.2 in [12].

Proposition 4. A language L is periodic iff any pair of its words commute i.e.,
w1 · w2 = w2 · w1 for every w1, w2 ∈ L.

We also present several observations about the shoveling capabilities of a reduced
language.

Fact 1 Shovel(L) is nonempty for any language L.

Proof. In fact, the empty word is a common prefix of any (even empty) set of
words, and thus ε ∈ Shovel(L) for any L. ut

Fact 2 Given a reduced language L, if Shovel(L) contains a nonempty word,
then L contains the empty word.

Proof. If a · w ∈ Shovel(L), then a is the first letter of every nonempty word in
L, and since L is reduced, L must contain the empty word, or otherwise lcp(L)
would not be ε.

Fact 3 If L is trivial, then Shovel(L) = ∆∗.

Proof. Trivial. ut

Proposition 5. If L is reduced and nontrivial, then Shovel(L) is prefix-closed
and totally ordered by the prefix relation.

Proof. Showing that Shovel(L) is prefix-closed follows from the definition. Take
any w ∈ Shovel(L) and a prefix w′ of w whose length is |w′| = k. Now, fix a word
v ∈ L and observe that w is a prefix of v ·w. Since w′ is a prefix of w, then v ·w′
is a prefix of v ·w and furthermore v ·w′ is of length at least k. Consequently, w′

is a prefix of v · w′.
We show that Shovel(L) is ordered with a simple induction over the length of

words in Shovel(L). Take two words w · a,w · b ∈ Shovel(L). Since L is nontrivial,
there is some nonempty word u ∈ L. Now, w · a is a prefix of u ·w · a and w · b is
a prefix of u ·w · b. Since u has length at least 1, both w · a and w · b are prefixes
of u · w. Consequently, a = b. ut

And now the proof of Proposition 1.For the if part, take any nontrivial L ⊆ w∗
and observe that wk ∈ Shovel(L) for any k ≥ 0. Furthermore, by Proposition 5
we get that Shovel(L) = w∗ · Prefix (w).

For the only if part we point out that Proposition 4 characterises nontrivial
periodic languages as exactly those that self-commute i.e., a nontrivial L is
periodic iff w1 · w2 = w2 · w1 for any two words w1, w2 ∈ L.

14 G. Laurence, A. Lemay, J. Niehren, S. Staworko, and M. Tommasi

First, we observe that by Fact 2 ε ∈ L. Next, take any w1, w2 ∈ L. Since
Shovel(L) is infinite, there exists a word v ∈ Shovel(L) whose length is greater
than |w1|+ |w2|. In addition we remark that v is a prefix of v, w1 · v, and w2 · v.
This allows us to infer that v = w1 · v′ and v = w2 · v′′, which implies that
w1 · v = w1 ·w2 · v′′ and w2 · v = w2 ·w1 · v′. Since the length of v is greater than
|w1|+ |w2|, the aforementioned two words agree on the first |w1|+ |w2| letters
and hence w1 · w2 = w2 · w1. ut

A.2 Proof of Proposition 2

Recall the definitions of push(L,w), rest(L,w), and offset(L,w) for a language
nonempty language L and a word w in three cases with s = max≤prefix

(Prefix (w)∩
Shovel(L)):

0o L = {ε}. Then push(L,w) = w, rest(L,w) = ε and offset(L,w) = ε.
1o L is periodic and L 6= {ε}. Then there exists k ≥ 0 and o ∈ Prefix (Period(L))

such that s = Period(L)k · o and push(L,w) = s, rest(L,w) = r and
offset(L,w) = o.

2o L is non-periodic. Then push(L,w) = s, rest(L,w) = r and offset(L,w) = s.

The fact that the set of offsets O = {offset(L,w) | w ∈ ∆∗} is finite follows
directly from the definitions in all three cases. We just show that this set can
be constructed in time doubly-exponential in the size of a context-free grammar
G defining L. The algorithms outlined below allow also to classify the case the
language L belongs to.

For the case 0o we note that the condition L = {ε} can be easily checked
on G by testing that every (reachable) nonterminal of G does not produce the
non-empty word. This can be done with a simple closure algorithm working in
time polynomial in the size of G.

We handle the remaining two cases together and let wmin a shortest word in L.
First, we observe that L is periodic if and only if its primitive period Period(L)
is also the primitive period of wmin. Now, let v be the shortest prefix v of wmin

such that wmin = vk for some k > 0 (possibly equal to wmin). One can easily
see that Period({wmin}) is the shortest prefix v of wmin such that wmin = vk for
some k > 0. Consequently, L is periodic if and only if L ⊆ v∗.

We observe that wmin may be of length exponential in the size of G (cf.
Example 4), and that may be also the length of v. Testing the inclusion L ⊆ v∗,
when G is a cfg defining L, can be done using standard automata techniques:
we construct a push-down automaton AG defining L, a dfa Av defining v∗, and
its complement A{

v defining ∆∗ \ v∗. Now, we take the product P = AG × A{
v

and test it for emptiness. Clearly, L ⊆ v∗ iff P defines an empty language. As for
complexity, we note that the size of AG is poly(|G|), the sizes of Av and A{

v are
poly(|v|) = exp(|G|), and thus the product automaton P is of size exp(|G|).

If L is periodic, then O = Prefix (Period(L)) = Prefix (v) and its size is single-
exponential in the size of G. If L is not periodic, then the test described above
fails i.e., P is nonempty and accepts an non-empty word w0. Note that because

Normalization of Sequential Top-Down Tree-to-Word Transducers 15

P is a push-down automaton whose size is exp(|G|) the shortest word recognized
by P may be of size doubly-exponential in the size of G. We claim that if a
word can be pushed through L, then it cannot be longer than w0. The proof is
combinatorial and we omit it here.

A.3 Definition of the pregroup of words over ∆

A pregroup is a set G with two operations: the unary inverse operator �−1 : G→
G and a partially defined binary operation � ·� that takes a pair of elements
of G and returns an element of G (or is undefined). Additionally, the following
conditions need to be satisfied (for z, z′, z′′ ∈ G):

• Associativity : if both z · z′ and z′ · z′′ are defined, then both (z · z′) · z′′ and
z · (z′ · z′′) are defined and equal.

• Inverse: z · z−1 and z−1 · z are defined.
• Annihilation: if z · z′ is defined, then z · z′ · (z′)−1 = z and z−1 · z · z′ = z′.

The pregroup of words over ∆ is the set G∆ = ∆∗ ∪ {w−1 | w ∈ ∆+}, where w−1

represents the inverse of an nonempty word w. The inverse operator is defined
as: (w)−1 = w−1, ε−1 = ε, and (w−1)−1 = w, for w ∈ ∆. The concatenation
operator is an extension of the standard word concatenation to inverse elements
as follows: w−1 · u−1 = (u · w)−1, w−1 · u = v if u = w · v, w−1 · u = v−1 if
w = u · v, u · w−1 = v if u = v · w, and u · w−1 = v−1 if w = u · v; the result is
undefined in all other cases where one argument of concatenation is an inverse.

A.4 Proof of Proposition 3

To prove Proposition 3 we distinguish 3 cases: L is trivial or L is periodic and
non trivial or L is non periodic.

If L is trivial, then push(L, z) = rest(L, z) = offset(L, z) = ε and the propo-
sition holds.

Let us assume that L is periodic and non trivial. Let us first consider the
case where z = w ∈ ∆∗. Let p = Period(L). We have:

Shovel(L,w) = p∗ · Prefix (p)

push(L,w) = pi · o for some i > 0 and o ∈ Prefix (p)

offset(L,w) = (pi · o) mod p = o

Let us recall that push(L,w) which is also a prefix of w. Note that for any prefix
u of a word v we have u · (u−1 · v) = v. Any word u in L is of the form pk for
some k > 0, and we have

push(L,w)·(offset(L,w)−1 · u · offset(L,w)) · rest(L,w)

= pi · o · (o−1 · pk · o) · (pi · o)−1 · w
= pk · pi · o · (pi · o)−1 · w
= pk · w = u · w

16 G. Laurence, A. Lemay, J. Niehren, S. Staworko, and M. Tommasi

Let us now consider the case where z = w−1 and w ∈ ∆∗. Let prev = Period(Lrev).
We have:

Shovel(Lrev, w−1) = (prev)∗ · Prefix (prev)

push(Lrev, w−1) = (prev)i · o for some i > 0 and o ∈ Prefix (prev)

offset(Lrev, w−1) = ((prev)i · o) mod (prev) = o.

Let u = pk ∈ L

push(L,w−1) ·
(
offset(L,w−1)−1 · u · offset(L,w−1)

)
· rest(L,w−1)

= (push(Lrev, wrev)rev)−1 ·
(
offset(Lrev, wrev)rev · u · (offset(Lrev, wrev)rev)−1

)
· (rest(Lrev, wrev)rev)−1

= (orev · pi)−1 ·
(
orev · pk · (orev)−1

)
·
((

((prev)i · o)−1 · wrev)
)rev)−1

Now, recall that for any u and v in ∆∗, (u−1 · v)rev = vrev · (urev)−1 and
(u · v−1)−1 = v · u−1. Thus we have((

((prev)i · o)−1 · wrev)
)rev)−1

=

(
(wrev)rev ·

(
((prev)i · o)rev

)−1)−1
=
(
(prev)i · o

)rev · w−1
= orev ·

(
(prev)i

)rev · w−1
= orev · pi · w−1

Hence,

push(L,w−1) ·
(
offset(L,w−1)−1 · u · offset(L,w−1)

)
· rest(L,w−1)

= (orev · pi)−1 ·
(
orev · pk · (orev)−1

)
· orev · pi · w−1

=
(
pk−i · (orev)−1

)
· orev · pi · w−1

Since, orev is a suffix of p, this gives pk · w−1 = u · w−1 and the lemma holds.

Consider L is non periodic and the case where z = w ∈ ∆∗. Then there
exists some word s such that Shovel(L) = Prefix (s). In this case, push(L,w) =
lcp({w, s}) and therefore push(L,w) is a prefix of s. We obtain that offset(L,w) =
push(L,w) and thus for all u ∈ L we have push(L,w) · (offset(L,w)−1 · u ·
offset(L,w))·rest(L,w) = push(L,w)·(push(L,w)−1·u·push(L,w))·push(L,w)−1w.
Recall that push(L,w) is in Shovel(L) and by the definition of Shovel we have
that push(L,w) is a prefix of u · push(L,w). Also, push(L,w) is a prefix of w.
Thus push(L,w) · (push(L,w)−1 · u · push(L,w)) · push(L,w)−1w = u · w.

The case where z = w−1 and w ∈ ∆∗ is similar. There exists some word
s such that Shovel(Lrev) = Prefix (s), and push(Lrev, wrev) = lcp({w, s}) =
offset(Lrev, wrev). Thus, for all u ∈ L we have

Normalization of Sequential Top-Down Tree-to-Word Transducers 17

push(L,w−1) · (offset(L,w−1)−1 · u · offset(L,w−1)) · rest(L,w−1)

= (push(Lrev, wrev)rev)−1 ·
(
push(Lrev, wrev)rev · u · (push(Lrev, wrev)rev)−1

)
·
(
(push(Lrev, wrev)−1 · wrev)rev

)−1
=
(
u · (push(Lrev, wrev)rev)−1

)
· push(Lrev, wrev)rev · w−1

= u · w−1

ut

A.5 Proof of Theorem 2

For a language L we define Offsets(L) = {offset(L,w) | w ∈ ∆∗}.

Proposition 6. For any reduced language L we have

1. ∀w ∈ Offsets(L) the language w−1 · L · w is reduced,
2. ∀w ∈ Offsets(Lrev) the language w · L · w−1 is reduced as well.

Proof. We only prove 1 since 2 is a consequence of 1. If ε ∈ L then ε ∈ w−1 ·L ·w
and the proposition is trivial. Otherwise, there exists two words u and v that
differ on the first letter. But in this case Offsets(L) is reduced to ε and the
proposition is also trivially true. ut

Lemma 2. For every q ∈ Q, every z ∈ Offsets(q), and every t ∈ dom(q)

T〈q,z〉(t) = z−1 · Left(q)−1 · Tq(t) · Right(q)−1 · z (2)

Proof. Rules are built using the following algorithm.

1: zk := Right(qk) · uk · Right(q)−1 · z
2: for i := k, . . . , 1 do
3: u′i := rest(qi, zi)
4: q′i := 〈qi, offset(qi, zi)〉
5: zi−1 := Right(qi−1) · ui−1 · Left(qi) · push(qi, zi)
6: u′0 := z−1 · Left(q)−1 · z0

We prove the lemma by induction on the structure of terms.
For the base case, we consider constants and therefore rules of the form

δ′(〈q, z〉, a) = u and Tq(a) = u. The algorithm justs realizes the affectation4:

u′ = z−1 · Left(q)−1 · u · Right(q)−1 · z

Therefore T〈q,z〉(a) = z−1 · Left(q)−1 · u · Right(q)−1 · z and the lemma holds.

4 maybe make this case more clear in section Normalisation

18 G. Laurence, A. Lemay, J. Niehren, S. Staworko, and M. Tommasi

Let us now consider a term t = f(t1, . . . , tk), a word z and a rule δ(q, f) =
u0 · q1 · · · qk · uk. Let us assume as our induction hypothesis that Equation (2)
holds for each subterm in t1, . . . , tk. We need to prove that:

u′0 · Tq′1(t1) · u′1 · · ·Tq′k(tk) · u′k =

z−1 · Left(q)−1 · u0 · Tq1(t1) · · ·Tqk(tk) · uk · Right(q)−1 · z

Fact 4 push(qi, zi) · Tq′i(ti) · rest(qi, zi) = Left(qi)
−1 · Tqi(ti) · Right(qi)

−1 · zi

Proof. By induction hypothesis, we develop Tq′i(ti) = offset(qi, zi)
−1 ·Left(qi)

−1 ·
Tqi(ti) ·Right(qi)

−1 ·offset(qi, zi). We observe that Left(qi)
−1 ·Tqi(ti) ·Right(qi)

−1

is a word of L̂qi , thus we conclude using Proposition 3. ut

We prove the following invariant of the algorithm for every 1 ≤ i ≤ k:

zi−1 · Tq′i(ti) · u
′
i · · ·Tq′k(tk) · u′k =

Right(qi−1) · ui−1 · Tqi(ti) · ui · · ·Tqk(tk) · uk · Right(q)−1 · z (3)

We proceed by induction on i from k to 1. For the base case i = k we have:

zk−1 · Tq′k(tk) · u′k
= Right(qk−1) · uk−1 · Left(qk) · push(qk, zk) · Tq′k(tk) · rest(qk, zk)

= Right(qk−1) · uk−1 · Left(qk)·
Left(qk)−1 · Tqk(tk) · Right(qk)−1 · Right(qk) · uk · Right(q)−1 · z

= Right(qk−1) · uk−1 · Tqk(tk) · uk · Right(q)−1 · z

Thus the invariant (3) holds for the base case. Let us now consider it holds
for some 1 ≤ i ≤ k. For i− 1 we have

zi−1 · Tq′i(ti) · u
′
i · · ·Tq′k(tk) · u′k

= Right(qi−1) · ui−1 · Left(qi) · push(qi, zi) · Tq′i(ti) · rest(qi, zi)

· · ·Tq′k(tk) · u′k
= Right(qi−1) · ui−1 · Left(qi) · Left(qi)

−1 · Tqi(ti) · Right(qi)
−1 · zi

· · ·Tq′k(tk) · u′k
= Right(qi−1) · ui−1 · Tqi(ti) · Right(qi)

−1 · Right(qi) · ui
· · ·Tqk(tk) · uk · Right(q)−1 · z

= Right(qi−1) · ui−1 · Tqi(ti) · ui · · ·Tqk(tk) · uk · Right(q)−1 · z

This proves the invariant. Now, since u′0 = z−1 · Left(q)−1 · z0, we obtain that

u′0 · Tq′1 · u
′
1 · · ·Tq′k · u

′
k =

z−1 · Left(q)−1 · u0 · Tq1(t1) · · ·Tqk(tk) · uk · Right(q)−1 · z

ut

Normalization of Sequential Top-Down Tree-to-Word Transducers 19

Lemma 3. (E1) is satisfied in M ′.

Proof. To prove (E1), we need to prove that L〈q,z〉 is reduced. By previous
lemma, we have for every q ∈ Q, every z ∈ Offsets(q), and every t ∈ dom(q)

L〈q,z〉 = z−1 · Left(q)−1 · Lq · Right(q)−1 · z

Since z ∈ Offsets(q), then z = w ∈ Shovel(L̂q) or z = w−1 with w ∈ Shovel(L̂rev
q).

The languages Left(q)−1 · Lq · Right(q)−1 = L̂q are reduced. Therefore using
Proposition 6, we obtain that (E1) is satisfied. ut

Lemma 4. Let L be a reduced language. For any w ∈ Prefix (Left(L · L′)) we
have w ∈ Prefix (L′), push(L,w) = w and rest(L,w) = ε.

Proof. If w = ε then the lemma is trivial. Otherwise, we know that ε ∈ L
otherwise L would not be reduced. Hence, w is a common prefix of all words in L′.
Therefore, L · w has also w as a common prefix and by definition w ∈ Shovel(L).
It follows that push(L,w) = w and rest(L,w) = ε. ut

Lemma 5. For any rule δ′(〈q, z〉, f) = u′0 · q′1 · u′1 · · ·u′k−1 · q′k · u′k of M ′, for
every 0 ≤ i ≤ k u′i ∈ ∆∗.

Proof. We consider a rule δ′(〈q, z〉, f) = u′0 · q′1 · u′1 · · ·u′k−1 · q′k · u′k of M ′ and

w ∈ Offsets(L̂rev
q) ∪ Offsets(L̂q). We essentially have to show that for all zi

computed by the normalisation algorithm, if zi = w−1i with wi ∈ ∆∗, then

ui = rest(L̂rev
qi , w

rev
i) = ε.

Let us consider Li defined by:

Li = z−1 · Left(q)−1 · u0 · Left(Lq1) · L̂q1 · Right(Lq1) · u1 · · ·ui−1 · Left(Lqi)

Observe that if wi is a suffix of Right(Li · L̂qi) then wrev
i is a prefix of Left(L̂rev

qi ·
Lrev
i). The language L̂rev

qi is reduced and by Lemma 4, rest(Lrev
qi , w

rev
i) = ε and

push(Lrev
qi , w

rev
i) = wrev

i . So it suffices to prove that for every i, wi is a suffix of

Right(Li · L̂qi).
We proceed by induction on i from k to 1. For the base case, zk = w−1k =

Right(qk) · uk · Right(q)−1 · z. We have L〈q,z〉 = Lk · L̂qk · w
−1
k and according to

Lemma 3, L〈q,z〉 is reduced. Therefore wk = Right(Lk · L̂qk).
For the induction case, we have by induction hypothesis that wi is a suf-

fix of Right(Li · L̂qi), and from Lemma 4, wi is a suffix of Right(Li) and
push(Lrev

qi , w
rev
i) = wrev

i . From the algorithm zi−1 = Right(qi−1) · ui−1 · Left(qi) ·
push(qi, zi). Hence, zi−1 = Right(qi−1) · ui−1 · Left(qi) · w−1i . If zi−1 ∈ ∆∗

we are done. Otherwise zi−1 = w−1i−1 with wi−1 ∈ ∆∗. Since wi is a suffix
of Right(Li) = Right(Li−1 · Right(qi−1) · ui−1 · Left(qi)), then zi−1 is a suffix of
Right(Li−1 · L̂qi−1). ut

Lemma 6. Given a reduced language L ⊆ ∆∗ and a word z ∈ G∆

lcp((offset(L, z)−1 · L · offset(L, z)) · rest(L, z)) = ε

20 G. Laurence, A. Lemay, J. Niehren, S. Staworko, and M. Tommasi

Proof. Let us consider the case where z = w ∈ ∆∗, the other case being symmetric.
Let us remark using Lemma 6, that L′ = offset(L, z)−1 ·L ·offset(L, z) is reduced.
If L′ does not contain ε then the Lemma is trivial. So let us consider the case
where ε ∈ L′.

We prove the lemma by contradiction and consider u 6= ε such that u =
lcp((offset(L,w)−1 · L · offset(L,w)) · rest(L,w)). Let v = push(L,w) · u. We
prove that v is a prefix of w. Indeed, since ε ∈ L′, u is a prefix of rest(L,w) =
push(L,w)−1 · w. Using Proposition 3, we have that v is a common prefix of
L · w. Therefore, v belongs to Shovel(L). This contradicts the fact that is the
maximum prefix of w that belongs to Shovel(L). ut

Lemma 7. (E2) is satisfied in M ′.

Proof. According to Lemma 3, each L〈q,z〉 is reduced. For the init rule, (E2) is
direct consequence of Lemma 6.

Consider a rule δ′(f, q′) = u′0 · q1 · · · qk · u′k. We know from Lemma 5 that
each u′i is either ε or a word in ∆∗. Moreover, according to line 3 of the algorihm,
for for each i > 0, u′i = rest(qi, zi). Therefore, by Lemma 6, lcp(Lq′i · u

′
i) = ε.

Note that if two languages L and L′ are such that lcp(L) = lcp(L′) = ε then
lcp(L ·L′) = ε. So, lcp(Lq′i ·u

′
i · · ·Lq′k ·u

′
k) = ε and (E2) is thus satisfied for every

rule. ut

Lemma 8. M equivalent with M ′

Proof. We prove that for all t, u0 · Tq0(t) · u1 = u′0 · Tq′0(t) · u′1. To do that, we
first inspect the initial rule. Using Lemma 2, we have, with v = Right(q0) · u1:

u′0 · Tq′0(t) · u′1 = u0 · Left(q0) · push(q0, v)

· offset(q0, v)−1 · Left(q0)−1 · Tq0(t) · Right(q0)−1 · offset(q0, v)

· rest(q0, v)

= u0 · Left(q0) · Left(q0)−1 · Tq0(t) · Right(q0)−1 · v
(using Prop. 3)

= u0 · Tq0(t) · u1

ut

A.6 Proof of Lemma 1

First, note that for every t ∈ dom(T) we have that

TM1(t) = u0 · Tq0(t) · u1 = u′0 · Tq′0(t) · u′1 = TM2
(t).

Therefore, u0 is a prefix of u′0 or u′0 is a prefix of u0. W.l.o.g. we assume that u0
is a prefix of u′0 i.e., u′0 = u0 ·v. Thus, we obtain u0 ·Tq0(t) ·u1 = u0 ·v ·Tq′0(t) ·u′1,
and Tq0(t) · u1 = v · Tq′0(t) · u′1. Consequently, v is also a prefix of Lq0 · u1 which
by (E2) implies that v = ε.

Normalization of Sequential Top-Down Tree-to-Word Transducers 21

Also, we note that u1 is a suffix of u′1 or u′1 is a suffix of u′1. Again, w.l.o.g.
we assume that u1 is a suffix of u′1 i.e., u′1 = v · u1. We get that u0 · Tq0(t) · u1 =
u0 · Tq′0(t) · v · u1 and Tq0(t) = Tq′0(t) · v. This implies that v is a suffix of Lq0 but
by (E1) we get that v must be an empty word, and so u1 = u′1 and Tq0 = Tq′0 .

Next, we prove the following inductive argument. If for a path π ∈ paths(dom(T)),
q = δ(q0, π), and q′ = δ′(q′0, π) we have Tq = Tq′ , then

1. δ(q, f) is defined if and only if δ′(q′, f) is, for every f ∈ Σ, and
2. if δ(q, f) = u0 · q1 · u1 · . . . · qk · uk and δ′(q′, f) = u′0 · q′1 · u′1 · . . . · q′k · u′k, then
ui = u′i for 0 ≤ i ≤ k and Tqi = Tq′i for every 1 ≤ i ≤ k.

The first condition follows trivially from equality of the domains of Tq and Tq′ .
We prove the second condition with induction over i: we assume that uj = u′j and
Tqj = Tq′j for every 0 ≤ j < i ≤ k and show that ui = u′i and then Tqi+1

= Tq′i+1
.

The arguments we use are analogous to those used to show equalities for the
initial rules.

Since Tq = Tq′ , for every t = f(t1, . . . , tk) ∈ dom(Tq)

Tq(t) = u0 ·Tq1(t1) ·u1 · . . . ·Tqk(tk) ·uk = u′0 ·Tq′1(t1) ·u′1 · . . . ·Tq′k(tk) ·u′k = Tq′(t),

which by IH give us the following equality

ui · Tqi+1
(ti+1) · ui+1 · . . . · Tqk(tk) · uk = u′i · Tq′i+1

(ti+1) · u′i+1 · . . . · Tq′k(tk) · u′k.

Because of this equality we have that ui is a prefix of u′i or u′i is a prefix of ui.
W.l.o.g. we assume that ui is a prefix of u′i i.e., u′i = ui · v. Then, v is also a
prefix of Lqi+1

· ui+1 · . . . · Lqk · uk and by (E2) v = ε. Thus, ui = u′i.
Now, we fix t = f(t1, . . . , tk) ∈ dom(Tq) and let w = ui+1 · Tqi+2(ti+2) · . . . ·

Tqk(tk) ·uk and w′ = u′i+1 ·Tq′i+2
(ti+2) · . . . ·Tq′k(tk) ·u′k. Note that w is a suffix of

w′ or w′ is a suffix of w. W.l.o.g. we assume that w is a suffix of w′ i.e., w′ = v ·w.
We observe that for every t′i+1 ∈ (f, i+ 1)−1dom(Tq) = (f, i+ 1)−1dom(Tq′) we
have

Tqi+1
(t′i+1) · w = Tq′i+1

(t′i+1) · w′

and then
Tqi+1

(t′i+1) = Tq′i+1
(t′i+1) · v,

which implies that v is a suffix of Lqi+1
(since (f, i+ 1)−1dom(Tq) = dom(Tqi+1

)).
By (E1) we have, however, that v = ε. Thus, Tqi+1 = Tq′i+1

. ut

A.7 Proof of Theorem 4

We show np-completeness of the following decision problem.

Problem: MINIMIZEstw
Input: An stw M and a natural number K.
Question: Is there an stw M ′ equivalent to M and of size ≤ K?

We reduce the following variant of SAT to MINIMIZEstw.

22 G. Laurence, A. Lemay, J. Niehren, S. Staworko, and M. Tommasi

Problem: SAT1
Input: ϕ ∈ 3CNF, i.e. a conjunction of clauses, where each clause is
a disjunction of 3 literals (a literal is a variable or its negation).
Question: Does there exists a valuation satisfying ϕ and such that
in every clause of ϕ exactly one literal is true?

Take any 3CNF formula ϕ = c1∧. . .∧ck over the set of Boolean variables p1, . . . , pn.
For technical reasons, we assume that k ≥ 1 and that no two clauses are the
same, i.e. ci 6≡ cj for i 6= j. We construct a stw M over the input alphabet
Σ = Σ(3) ∪Σ(2) ∪Σ(0)

Σ(3) = {fj}kj=1, Σ(2) = {g1i , g2i , g3i }ni=1, Σ(0) = {oi, zi}ni=1 ∪ {h},

and the output alphabet ∆ = {s}. The constructed transducer accepts on the
input trees with root f that represent the clauses of the formula ϕ. Additionally,
the transducer accepts trees with root g1i , g

2
i , g

3
i that represent dummy clauses

(i.e. pi ∨ ¬pi independently three times). For all of those trees the transducer
outputs s. Finally, to prevent retracting the output string s to the initial rule, the
transducer accepts also a tree h for which it output the empty string. Formally,
the constructed transducer Mϕ has its initial rule q0 and the following transitions:

1. δ(q0, fj) = s · q`j,1 · q`j,2 · q`j,3 for every 1 ≤ j ≤ k with cj = `j,1 ∧ `j,2 ∧ `j,3;

2. δ(q0, g
j
i) = s · qpi · q¬pi for 1 ≤ i ≤ n and 1 ≤ j ≤ 3;

3. δ(qpi , oi) = ε and δ(q¬pi , zi) = ε for 1 ≤ i ≤ n;
4. δ(q0, h) = ε.

Let Tϕ be the transformation defined by Mϕ. We observe that the size of Mϕ is
5k + 14n+ 2. Now, we claim that

ϕ ∈ SAT1 ⇐⇒ (Mϕ, 4k + 12n+ 2) ∈ MINIMIZEstw.

For the only if part we take the valuation V : {p1, . . . , pn} → {true, false}
witnessing ϕ ∈ SAT1 and construct an stw MV obtained from Mϕ by pushing
down the symbols s to the subtrees that correspond to the literals satisfied by V .
Formally, the transducer MV differs from Mϕ only on the transition function:

1. δV (q0, fj) = q`j,1 · q`j,2 · q`j,3 for every j ∈ {1, . . . , k} with cj = `j,1∧ `j,2∧ `j,3;

2. δV (q0, g
j
i) = qpi · q¬pi for 1 ≤ i ≤ n and 1 ≤ j ≤ 3;

3. δV (qpi , oi) = s and δV (q¬pi , zi) = ε for 1 ≤ i ≤ n such that V (pi) = true;
4. δV (qpi , oi) = ε and δV (q¬pi , zi) = s for 1 ≤ i ≤ n such that V (pi) = false;
5. δV (q0, h) = ε.

Mϕ and MV are equivalent because V is the witness of ϕ ∈ SAT1 and we observe
that the size of MV is exactly 4k + 12n+ 2.

For the if part, take the stw M ′ that is equivalent to Mϕ and whose size is
4k + 6n+ 2. Let w0 · q0(x0) ·w1 be its initial rule, and observe that both w0 and
w1 are ε because Tϕ(h) = ε.

We observe that M needs to have at least 1 + 2n states because it is the
Myhill-Nerode index of the tree language dom(Tϕ). Consequently, M needs to
have at least

Normalization of Sequential Top-Down Tree-to-Word Transducers 23

1. 1 initial rule of size 1,
2. k transition rules of arity 3 with the symbols fj ,

3. 3n transition rules of arity 2 with the symbols gji ,
4. n transition rules of arity 0 with the symbols oi,
5. n transition rules of arity 0 with the symbols zi, and
6. 1 transition rules of arity 0 with the symbol h.

The size of all rules without counting the output strings is (at least) 4k+ 11n+ 2.
Thus, it remains n tokens s that need to be distributed among the rules. We
claim that tokens are attributed to the rules with the symbols oi and zi only: one
token to either oi or zi only for every 1 ≤ i ≤ n. This follows from an involved
combinatorial argument omitted here. The distribution of the tokens is used to
construct a valuation V witnessing ϕ ∈ SAT1.

np-completeness follows from the fact that testing the equivalence of stws

is known to be in ptime [16]. Thus a non deterministic Turing machine needs
to guess an stw M ′ whose size is lower than min{|M |,K} and then test the
equivalence of M and M ′. ut

