
A Uniform Programming Language for
Implementing XML Standards?

Pavel Labath1 and Joachim Niehren2

1 Commenius University, Bratislava 2 INRIA, Lille

Abstract. We propose X-Fun, a core language for implementing various
Xml standards in a uniform manner. X-Fun is a higher-order functional
programming language for transforming data trees based on node selec-
tion queries. It can support the Xml data model and XPath queries as a
special case. We present a lean operational semantics of X-Fun based on
a typed lambda calculus that enables its in-memory implementation on
top of any chosen path query evaluator. We also discuss compilers from
Xslt, XQuery and XProc into X-Fun which cover the many details
of these standardized languages. As a result, we obtain in-memory im-
plementations of all these Xml standards with large coverage and high
efficiency in a uniform manner from Saxon’s XPath implementation.

Keywords: Xml transformations, database queries, functional program-
ming languages, compilers.

1 Introduction

A major drawback of query-based functional languages with data trees so far is
that they either have low coverage in theory and practice or no lean operational
semantics. Theory driven languages are often based on some kind of macro tree
transducers [12,5,3], which have low coverage, in that they are not closed under
function composition [4] and thus not Turing complete (for instance type check-
ing is decidable [11]). The W3C standardised languages XQuery [13] and Xslt
[7], in contrast, have large coverage in practice (string operations, data joins,
arithmetics, aggregation, etc.) and in theory, since they are closed by function
composition and indeed Turing complete [8]. The definitions of these standards,
however, consist of hundreds of pages of informal descriptions. They neither ex-
plain how to a build a compiler in a principled manner nor can they be used as
a basis for formal analysis.

A second drawback is the tower of languages approach, adopted for stan-
dardised Xml processing languages. What happened in the case of Xml was the
development of a separate language for each class of use cases, which all host
the XPath language for querying data trees based on node navigation. Xslt
serves for use cases with recursive document transformations such as Html pub-
lishing, while XQuery was developed for use cases in which Xml databases are

? This research was supported in part by the grant VEGA 1/0979/12

queried. Since the combination of both is needed in most larger applications, the
Xml pipeline language XProc [17,16,18] was developed and standardised again
by the W3C. This resulted in yet another functional programming language for
processing data trees based on XPath.

For resolving the above two drawbacks, the question is whether there exists
a uniform core language for processing data trees that can cover the different
Xml standards in a principled manner. It should have a lean and formal oper-
ational semantics, support node selection queries as with XPath and it should
be sufficiently expressive in order to serve as a core language for implementing
XQuery, Xslt, and XProc in a uniform manner.

Related work. An indicator for the existence of a uniform core language for Xml
processing is that the omnipresent Saxon system [14] implements Xslt and
XQuery on a common platform. However, there is no formal description of this
platform as a programming language, and it does not support the Xml pipeline
language XProc so far. Instead, the existing implementations of XProc, Cal-
abash [16] and QuiXProc [18], are based on Saxon’s XPath engine directly.

The recent work from Castagna et. al. [2] gives further hope that our question
will find a positive answer. They present an XPath-based functional program-
ming language with a lean formal model based on the lambda calculus, which
thus satisfies our first two conditions above and can serve as a core language for
implementing a subset of XQuery 3.0. We believe that relevant parts of Xslt
and XProc can also be compiled into this language, even though this is not
shown there. The coverage, however, will remain limited, in particular on the
XPath core (priority is given to strengthening type systems). Therefore, our
last requirement is not satisfied.

Contributions. In this paper, we present the first positive answer to the above
question based on X-Fun. This is a new purely functional programming language.
X-Fun is a higher-order language and it supports the evaluation of path-based
queries that select nodes in data trees. The path queries are mapped to X-Fun
expressions, whose values can be computed dynamically. In contrast to most
previous interfaces between databases and programming languages, we overload
variables of path queries with variables of X-Fun. In this manner, the variables in
path queries are always bound to tree nodes, before the path query is evaluated
itself. We note in particular, that path queries are not simply mapped to X-Fun
expressions of type string.

The formal model of the operational semantics of X-Fun is a lambda calculus
with a parallel call-by-value reduction strategy. Parallel evaluation is possible
due to the absence of imperative data structures. The main novelty in X-Fun
admission of tree nodes as values of type node. Which precise nodes are admitted
depends on a tree store. New nodes can be created dynamically by adding new
trees to the tree store. The same tree can be added twice to the store but with
different nodes. How nodes are represented internally can be freely chosen by
the X-Fun implementation and is hidden from the programmer.

X-Fun can serve as a uniform core language for implementing XQuery, Xslt
and XProc. In order to do so, we have developed compilers of all three languages
into X-Fun. We also discuss how to implement X-Fun in an in-memory fashion
on top of any in-memory XPath evaluator. Based on our compilers, we thus
obtain new in-memory implementations of XQuery, Xslt and XProc with
large coverage. Our implementation has very good efficiency and outperforms
the most widely used XProc implementation by a wide margin.

Outline. In Section 2 we introduce our general model of data trees, alongside
its application to Xml documents. The syntax and type system of the X-Fun
language is introduced in Section 3. The applications of X-Fun to Xml docu-
ment transformation is studied in Section 4, where we discuss compilers from
other Xml processing languages into X-Fun. Section 5 contains our notes on the
implementation of X-Fun and the results of our experiments.

2 Preliminaries

We introduce a general concept of data trees which will be used in the X-Fun
language. We also show how to instantiate the trees to the Xml data model.

2.1 Data values and data trees

We fix a finite set Char whose elements will be called characters. A data value
”c1 · · · cn” is a word of characters for c1, . . . , cn ∈ Char . We define String =
Char∗ to be the set of all data values, and nil=”” to be the empty data value.

Next, we will fix a natural number k ≥ 1 and introduce data trees in which
each node contains exactly k data values with characters in Char .

A node label is a k-tuple of data values, i.e., an element of (String)k. The set
of data trees T of label size k over Char is the least set that contains all pairs of
node labels and sequences of data trees in T . That is, it contains all unranked
trees t with the abstract syntax t ::= l(t1, . . . , tn),where n ≥ 0 and l ∈ Stringk.
It should be noticed that the set of node labels is infinite, but that each node
label can be represented finitely.

2.2 XML data model

For Xml data trees, we can fix k = 4 and Char the set of Unicode characters,
and restrict ourselves to node labels of the following forms, where all vi are data
values:

(”element”, v1, v2, nil) (”attribute”, v1, v2, v3)
(”comment”, nil, nil, v3) (”processing-instruction”, v1, nil, v3)
(”document”, nil, nil, nil) (”text”, v1, nil, nil)

An element (”element”, v1, v2, nil) has three non-nil data values: its type
“element”, a name v1 and a namespace v2. An attribute has four data values: its

type, a name v1, a namespace v2, and the attribute value v3. A text node contains
its type and its text value v3. Besides these, there are comments, processing
instructions and the rooting document node.

3 Language X-Fun

In this section, we introduce X-Fun, a new functional programming language for
transforming data trees. X-Fun can be applied to all kinds of data trees with
a suitable choice of its parameters. We will instantiate the case of data trees
satisfying the Xml data model concomitant with XPath as a query language.

We start with introducing the types and values of X-Fun (Section 3.1). Then
we explain how to map path queries to X-Fun values, by using particular X-Fun
expressions with variables (Section 3.2). The general syntax of X-Fun expres-
sions is given in Section 3.3. Some syntactic sugar and an example of an X-Fun
program are given in Sections 3.7 and 3.8. Discussion of the typing rules for
X-Fun’s type system and the formal semantics of X-Fun can be found in the
research report [10].

3.1 Types and Values

The X-Fun language supports higher-order values and expressions with the fol-
lowing types:

T ::= none | node | tree | number | bool | char

| T1 × . . .× Tn | [T] | T1 → T2 | T1 ∪ T2
A value of type char is an element of Char , a value of type tree is an element

of T . A value of type number is a floating point number, while the values of
type bool are the Boolean values true and false. A value of type node will be
a node of the graph of one of the trees stored by the environment of the X-Fun
evaluator. The precise node identifiers chosen by the evaluator are left internal
(to the mapping from trees to graphs).

As usual, we support list types [T] which denote all lists of values of type T ,
product types T1× . . .×Tn whose values are all tuples of the values of types Ti,
and function types T1 → T2 whose values are all partial functions of values of
type T1 to values of type T2. Besides these, we also support type unions in the
obvious manner.

A data value ”c1 · · · cn” ∈ String is considered as a list of characters of
type string = [char]. A node label is considered a k-tuple of strings, i.e., as a
value of type label = stringk. Hedges are considered as lists of trees of type
hedge = [tree].

Since XPath can return sequences of items of different types, we define the
type pathresult as node ∪ number ∪ string ∪ bool. The result of evaluating
a path expression will then be of type [pathresult]. To be able to specify path
expressions, we define the type path as [char∪pathresult∪ [pathresult]], i.e.,
as list of characters, individual items returned by a path expression, and whole
sequences of those items.

3.2 XPath queries as X-Fun expressions

We will consider XPath expressions as values of our programming language.
This is done in such a manner that the variables in XPath expressions can
be bound to values of the programming language. For instance, if we have an
XPath expression

$x//book[auth=$y]

then one might want to evaluate this expression while variable x is bound to
a node of some tree and variable y to some data value. In X-Fun, the above
query will be represented by the following expression of type path, where x is a
variable of type node and y a variable of type string:

x ::’/’ ::’/’ ::’b’ ::’o’ ::’o’ ::’k’ ::’[’ ::’a’ ::’u’ ::’t’ ::’h’ ::’=’ :: y ::’]’ :: nil

The concrete syntax of X-Fun supports syntactic sugar for values of type path,
so that the above expression can be defined as:

"$x//book[auth=$y]"

In order to enable the evaluation of path expressions, X-Fun supports a builtin
function evalPath of type path→ [pathresult]. In an implementation of X-Fun,
this function can be mapped straightforwardly to existing XPath evaluators.

3.3 Syntax of X-Fun expressions

X-Fun is a purely functional programming language whose values subsume higher-
order function, trees, strings, numbers and Boolean values. The evaluation strat-
egy of X-Fun is fully parallel, which is possible since no imperative constructs
are permitted.

The syntax of X-Fun programs E is given in Figure 1. All expressions of
X-Fun are standard in functional programming languages, so we only briefly
describe different kinds of subexpressions of X-Fun programs.

A variable x is evaluated to the value of the corresponding type. The constant
expression c returns the respective constant, which can be a Boolean value, a
number or a character from Char . The list constructor E1 :: E2 prepends an
element to a list, while the tuple constructor (E1, . . . , En) constructs tuples.

The match expression match E { P1 → E1, . . . , Pn → En } selects one of
the branches Ei based on the patterns Pi, which are matched against the value
of E. The pattern x : T captures a matched value of type T into a variable.
The pattern !(E) matches the value against the value of expression E. Here,
the matching of functional values, or lists/tuples that contain functions is not
permitted. Pattern P1 :: P2 matches a list if P1 and P2 match its head and tail,
while the pattern (P1, . . . , Pn) matches tuples.

A function expression fun x:T1 → T2 { E } returns a new function, with the
argument x : T1 and the return value of type T2 obtained by the evaluation of
the function body E. The expression E1(E2) applies a function to a value. X-Fun
also supports exception handling, where exceptions are values of type string.

Expressions

E ::= x

| c

| E1 :: E2

| (E1, . . . , En), n ≥ 2

| match E { P1 → E1, . . . , Pn → En }
| fun x:T1 → T2 { E }
| E1(E2)

| try E1 catch(x) E2

| raise(E)

Patterns
P ::= x : T

| !(E)

| P1 :: P2

| (P1, . . . , Pn), n ≥ 2

Fig. 1. Syntax of X-Fun’s expressions

3.4 Typing

Expressions of the X-Fun language are constructed from an infinite set of typed
variables. A variable is ranged over by x and its type by Type(x). The evaluation
of an expression is done in an environment, that is a partial function binding
variable x to values of Type(x).

The typing rules of X-Fun are explained in Figure 2. Most of them are stan-
dard. However, it should be noticed that we require explicit type annotations
on function definitions, since this type cannot always be inferred otherwise. In
the figure, the relation T1 � T2 means that the type T2 is more general than T1,
i.e., that set of values of type T1 is a subset of the set of values of type T2. The
definition of this subtyping relation is given in Figure 3. These rules are also
self-explaining so we do not go into detail. We only single out the last two rules
on tuples, which allow us to deduce that types (T1, T2∪T ′2) and (T1, T2)∪(T1, T

′
2)

are equivalent
A complete program is an expression of function type T1 → T2, for which all

free variables are bound by the original environment, such as those in Figure 5.
The arguments of the function will be provided when the function is called.

3.5 Semantics

We define the semantics of X-Fun by the small-step evaluator in Figure 4, which
rewrites expressions to expressions or values in a given environment.

What is new compared to standard λ-calculi is the way in which nodes of
trees are explored. The intuition is as following. Basically, an X-Fun program
is a pipeline of transformation steps composed by function applications. Each
step can use the existing trees to compute a new tree that is then added to the
environment. Thereby identifiers for the nodes of the tree must be generated,
which then become accessible by navigation from the root. Within each step, the
evaluator may navigate on the existing trees up, down, left and right, and com-

Expressions
E : T T � T ′

E : T ′
Type(x) = T

x : T

c ∈ Char

c : char

n ∈ R
c : number

b ∈ {true, false}
c : bool

E1 : T E2 : [T]

E1 :: E2 : [T]

Ei : Ti

(E1, . . . , En) : T1 × · · · × Tn

E : T Pi : T Ei : T ′

match E { P1 → E1, . . . , Pn → En } : T ′
E1 : T → T ′ E2 : T

E1(E2) : T ′

Type(x) = T1 E : T2

fun x:T1 → T2 { E } : T1 → T2

E1 : T Type(x) = string E2 : T

try E1 catch(x) E2 : T

E : string

raise(E) : none

Patterns
P : T T � T ′

P : T ′
Type(x) = T

[x : T] : T

P1 : T P2 : [T]

P1 :: P2 : [T]

E : T T non-functional

!(E) : T

Pi : Ti

(P1, . . . , Pn) : T1 × · · · × Tn

Fig. 2. Typing rules of X-Fun.

true

none � T
T1 � T2

[T1] � [T2]

T ′1 � T1 T2 � T ′2

T1 → T2 � T ′1 → T ′2

true

T � T ∪ T ′

T1 � T T2 � T
T1 ∪ T2 � T

T1 � T2
T1 ∪ T2 � T2

Ti � T ′i
T1 × · · · × Tn � T ′1 × · · · × T ′n

Ti � T ′i ∪ T ′′i
(T1 × · · · × Tn) � (T1 × · · · × T ′i × · · · × Tn) ∪ (T1 × · · · × T ′′i × . . .× Tn)

Fig. 3. The subtyping relation of X-Fun.

Evaluation
E

η−→ E′ C[.] evaluation context η action on D

C[E]
η−→ C[E′]

v = getValD(x)

x −→ v

i least integer s.t. JvKPi
= Fi

match v { P1 → E1, . . . , Pn → En }
bindVarsD(Fi)−−−−−−−−−→ Ei

true

fun x:T1 → T2 { E }(v) −→match v { x′ : T1 → E[x/x′] }
t = subtreeD(v)

subtree(v) −→ t

t is a tree

addTree(t)
v=addTreeD(t)−−−−−−−−−−→ v

l(h) valid data tree of the chosen data model

makeTree((l, h)) −→ l(h)

v = evalPathD(w)

evalPath(w) −→ v

Pattern matching
v is a value of type T

JvKx:T = (x = v)

v is a value

JvK!(v) = ()

v = (v1, . . . , vn) JviKPi
= Fi

JvK(P1,...,Pn)
= F1& · · ·&Fn

v = v1 :: v2 JviKPi
= Fi

JvKP1::P2
= F1&F2

Fig. 4. Small-step semantics of X-Fun expressions in an environment D.

pute joins between data values of different trees, while constructing the output
tree of the step in a top-down manner.

As usual, the evaluator guarantees that expressions will be reduced to a value
in a finite number of steps (which is then unique modulo renaming of node iden-
tifiers and variables names), run indefinitely, or get stuck with a programming
error. For instance, an application evalPath(p) cannot proceed if p is a value of
type path but does not represent a well-formed path query.

The semantics is defined with respect to an environment D. It defines two

kinds of judgements E
η−→ E′ or E

η−→ v where E and E′ are expressions and
v is a value with respect to D. The annotation η on the arrow is an action
changing the environment D. This action may also be empty, in which case we
omit the annotation on the arrow. We consider an environment as an abstract
data structure that implements the graph of a bag of data trees and a binding of
variables with respect to this graph. Besides the empty action, we support the
following kinds of actions η on environments D, where xi are variables, and vi

are values with respect to D:

bindVarsD((x1 = v1)& · · ·&(xn = vn)) for i = 1, . . . , n
bind variable xi to value vi

v = getValD(x) get value v bound to x
v = addTreeD(t) add a copy of tree t to the graph and

return the identifier v chosen for its root

Furthermore, the environment has the ability to evaluate path queries, defining
the following two kinds of judgements, where v and v′ are values and t is a data
tree:

t = subtreeD(v) return the subtree t a node v
v′ = evalPathD(v) return value v′ of evaluating path v

The precise definition of evalPathD is the first parameter of the X-Fun language.
The second is the definition of what is a valid data tree in the data model under
consideration.

An evaluation context C[·] is an X-Fun expression E that contains a single
occurrence of a fresh variable “·” that we call the hole marker. As usual for
parallel evaluation, the hole marker can be anywhere, but not in the body E of
some function definition fun x:T1 → T2 { E }, and not in the continuations Ei
of a match expression match E { P1 → E1, . . . , Pn → En }. We will write
C[E′] for the expression obtained by substituting the unique occurrence of the
hole marker · by E.

We now discuss the rules of the operational semantics in Figure 4. Note that
we assume as usual, that all bound variables are always renamed apart before
the application of any of these rules. The first rule states that an evaluation step
can be applied to any subexpression in an evaluation context. Second, a variable
can be replaced by the value to which it is bound in the environment, if there is
any.

The rule for match expression states that the expression can be replaced
by the first expression Ei whose pattern Pi matches the value v. During the
replacement all capture variables in the pattern Pi are bound to the respective
sub-values of v in the environment. The judgements for patterns define whether
a pattern matches a value. If the judgement JvKP = F1& · · ·&Fn holds then the
pattern P matches the value v and the expression F1& · · ·&Fn provides a list of
captured bindings.

The reduction of function applications fun x:T1 → T2 { E }(v) creates a
match expression match v { x′ : T1 → E[x/x′] } binding a fresh variable x′ to
the argument v, while starting the evaluation of the body E of the function, but
with x replaced by x′.

Applications of builtin functions will be reduced as follows: subtree(v) re-
turns the subtree of node v in the graph of D, while addTree(t) adds tree t to
environment D and returns the root node that was created thereby.

Only the last 2 reduction rules depend on the parameters of X-Fun. An
application makeTree((l, h)) is reduced to the data tree l(h) if the latter is well-
formed in the chosen data model. Therefore, we can assume that all data trees

in the environment D of the evaluator are always well-formed. An application
evalPath(w) is reduced to the result of evaluating query w with respect to D,
i.e. evalPathD(w), if it exists.

3.6 Builtin operators

At the beginning of the evaluation, the environment contains bindings of the
global variables given in Figure 5.

Parameters Fixed
Global variable Type Global variable Type
makeTree label× [tree]→ tree nil [none]
evalPath path→ [pathresult] subtree node→ tree
less char× char→ bool label node→ label

addTree tree→ node

Fig. 5. Builtin operators of X-Fun

The first block contains three functions, whose semantics are parameters of
the language, and depend on the query language and data model. For a label l
and a sequence of trees h, the function application makeTree(l, h) returns the
data tree l(h), if l(h) is a well-formed data tree (e.g., in the Xml data model
attributes cannot have children) and raises an exception otherwise. The function
evalPath(p) evaluates a path expression p. Whenever p is not well-formed (e.g.,
with respect to the XPath 3.0 specification) an error is raised. Note that path
expressions are X-Fun values, which means they can be computed dynamically
by the X-Fun program using information from the input data tree. We will also
define functions evalPathT , on top of evalPath, for T = [node], [string], etc.
These functions verify (using a match expression with a typecase) that the
result of the path call is of type T and raise an exception otherwise.

The next four operators are generic and do not depend on the specific kind
of data trees. The variable nil refers to the empty list. A function application
subtree(v) returns the subtree rooted at node v, while a function application
label(v) returns the label of the node. The function addTree returns the identifier
of the root node of the tree, and is used for storing the graph of the tree in the
environment. This function can be used to access nodes of newly generated trees
by starting path navigation from their root.

3.7 Syntactic sugar

In the X-Fun snippets in the rest of the paper we shall employ some syntactic
shortcuts, which enable us to express more succinctly some X-Fun constructs:

list concatenation We shall use the binary operator * to concatenate two lists.

simplified patterns When the type of a capture variable can be deduced
from the matched expression we shall omit the “: T” in the capture pat-
tern. This happens when the match expression is used to decompose lists
and tuples instead of doing a typecase. For example, we shall simply write
match E { h :: t → E1, e → E2 } to get the head and tail of a list.

let-declarations We shall use the syntax let x1 = E1, . . . , xn = En in E
instead of match (E1, . . . , En) { (x1, . . . , xn) → E } as a more familiar
way to declare variables.

tuple arguments We shall allow tuple arguments to functions to be written
without an extra pair of parentheses. I.e., f(a, b) instead of f((a, b)). This is
unambiguous since tuples always have at least two members.

equality comparison The operator E1 = E2 shall be defined (for non-functional
types T) as match E1 { !(E2)→ true, x : T → false }.

conditional expression The expression if E then E1 else E2, where E is of
type bool is defined as match E { !(true)→ E1, !(false)→ E2 }.

multi-argument functions For functions accepting tuples as arguments, we
shall write the expression fun (a, b):T1×T2 → T { E } instead of fun x:T1×
T2 → T followed by a match x { (a, b)→ E }

3.8 Example

In Figure 6 we illustrate a transformation that converts an address book into
Html. The address fields are assumed to be unordered in the input data tree,
while the fields of the output Html addresses should be published in the order
name, street, city and, phone.

<addre s s e s>
<address>
<name>Jemal Antidze</name>
<phone>99532 305972</phone>
<c i t y>T b l i s s i</ c i t y>
<phone>99532 231231</phone>

</ address>
<address>
<name>Joachim Niehren</name>
<c i t y>L i l l e</ c i t y>
<s t r e e t>Rue Esquermoise</ s t r e e t>

</ address>
</ addre s s e s>

⇒

<o l>
< l i>

<p>Jemal Antidze</p>
<p>T b l i s s i</p>
<p>Phone: 99532 305972</p>
<p>Phone: 99532 231231</p>

</ l i>
< l i>

<p>Joachim Niehren</p>
<p>Rue Esquermoise</p>
<p>L i l l e</p>

</ l i>
</ o l>

Fig. 6. Publication of an address book in Html except for secret entries

An X-Fun program defining this transformation is given in Figure 7. Start-
ing at the root it first locates all address records, and applies the function
convert address to each of them. For each address record, the program first

extracts the values of the fields name, street, and city located at some children
of x. These values are then bound to variables named alike and later output as
text nodes. The example program uses the standard map function, which can
be defined in X-Fun for every T and T ′ as follows

mapT→T ′ = fun x : (T → T ′)× [T]→ [T ′] { match x {
(f , head : : t a i l) → f (head) : : mapT→T ′ (f , t a i l)
other → nil

} }

and the functions element and text, which are wrappers around makeTree which
facilitate creation of nodes of the correct kind.

fun book : t ree→ t ree {
l e t bookroot = addTree(book) i n
l e t conve r t addre s s = fun x : node→ t ree {

l e t name = evalPath[node] (”$x/ c h i l d : : name/ text () ”) ,
s t r e e t = evalPath[node] (”$x/ c h i l d : : s t r e e t / t ext () ”) ,
c i t y = evalPath[node] (”$x/ c h i l d : : c i t y / text () ”) i n

element(” l i ” ,
element(”p” , mapnode→tree (name , subtree)) : :
element(”p” , mapnode→tree (s t r e e t , subtree)) : :
element(”p” , mapnode→tree (c i ty , subtree)) : :
mapstring→tree (

fun x : string→ tree {
element(”p” , text(”Phone : ” ∗ x) : : n i l)

} , evalPath[string] (” data ($x/ c h i l d : : phone) ”))
)

} i n
element(” o l ” , mapnode→tree (conver t addres s ,

evalPath[node] (”$bookroot / descendant : : address ”)))
}

Fig. 7. X-Fun program converting address books to Html

4 Translations from other Xml languages

In this section, we briefly sketch translations from the standard Xml processing
languages, Xslt XQuery and XProc. By implementing these three compilers,
we obtain a uniform implementation of the whole Xml processing stack based
on a single X-Fun evaluator.

Xslt. Each template in the Xslt stylesheet is translated to a function in X-
Fun. Furthermore, for each mode, we produce an additional function which im-
plements the selection of the correct template from the set of templates asso-
ciated with that mode according to their match patterns. The call-template

and apply-templates instructions are translated as calls to the template or
mode functions respectively. In the copy-of instruction, the nodes returned by
the XPath expression are copied to the output using the subtree function and
strings and numbers are converted to a new text node with a call to makeTree.
The instructions constructing elements, attributes and other Xml nodes trans-
late to corresponding calls to makeTree. The for-each instruction translates
to a call to map, where the list to map over is produced by a call to evalPath
and the mapping function is the body of the for-each instruction. Other Xslt
instructions like if and choose can be translated similarly.

XQuery. The feature that most distinguishes XQuery is the Sql-like Flwor
expression. It enables the programmer to create a stream of tuples using the
for and let clauses, filter them with a where clause and then reorder them
using the order by clause. There is no single expression in X-Fun which covers
this functionality, but it is easy to build it piecewise. Using several evalPath
calls we can construct the list of tuples which corresponds to the tuple stream
of XQuery. Sorting and filtering of a list are functions easily definable in a
functional language, and the functionality of where and order by is translated
to calls to these functions. The sort and filter conditions are given again by
calls to evalPath with the appropriate XPath expression. Translation of other
XQuery constructs like the if expressions and functions proceeds in a straight
forward manner.

XProc. By encapsulating each processing step in a function, X-Fun can easily
express the multi-stage processing which is inherent in XProc. The pipelines
then become simple function compositions. XProc steps which invoke XQuery
or Xslt processing are handled by defining a function whose body is the trans-
lation of the respective program. Simple XProc steps like split-sequence,
which splits a sequence of documents into two based on an XPath criterion are
defined as normal X-Fun functions and provided as a library. The pipeline them
simply calls these functions to do the required processing. The rest of the con-
structs like choosing among alternative subpipelines (choose) or looping over
documents in a sequence are compiled to match and map expressions in X-Fun.

4.1 Compilers in more detail

On Figure 8 we show the translation of typical Xslt instructions. The X-Fun
translations reference two additional functions. The first is concathedge, which
takes a list of hedges (a list of lists of trees) as an argument and concatenates
them, returning a single hedge as a result. It can be defined in X-Fun in a straight
forward way. The second function is toHedge, which implements the conversion
from an XPath sequence to an output tree fragment. Depending on the type of
items, it either calls the subtree function or converts the value to a text node.
The implementation of this function is in Figure 9. For consistency with the
Xslt behaviour, the function also inserts spaces between adjacent text nodes,
which accounts for most of its complexity.

<xsl:for−each s e l e c t=” expr e s s i on ”>
. . . body . . .

</xsl:for−each>

⇓
concathedge(mappathresult→hedge (fun cur : pathresult→ hedge

. . . body . . . , evalPath(” exp r e s s i on ”)))

<x s l : i f t e s t=” expr ”> . . . body . . . </ x s l : i f>

⇓
i f (evalPath(”$cur [expr] ”) 6= n i l) then . . . body . . . e l s e n i l

<xsl:choose>
<xsl:when t e s t=” expr1 ”> . . . body . . .</xsl:when>
<xsl:when t e s t=” expr2 ”> . . . body . . .</xsl:when>
. . .
<xsl:otherwise> . . . body . . .</xsl:otherwise>

</xsl:choose>

⇓
i f (evalPath(”$cur [expr1] ”) 6= n i l) then . . . body . . .
e l s e i f (evalPath(”$cur [expr2] ”) 6= n i l) then . . . body
. . .
e l s e . . . body . . .

<xsl:copy−of s e l e c t=” expr ”/>

⇓
toHedge(evalPath(” expr ”))

<xsl:copy> . . . body . . . </xsl:copy>

⇓
makeTree(l a b e l (cur) , . . . body . . .)

Fig. 8. Xslt instructions and their X-Fun equivalents

fun l i s t : [pathresult]−>hedge {
match l i s t {

head : : t a i l →
(match head {

n : node → subt ree (n) ,
other : bool∪number∪ s t r i n g →

text(evalPathstring (” s t r i n g ($other) ”))
}) : : (match l i s t {

(f i r s t : bool∪number∪ s t r i n g) : :
(second : bool∪number∪ s t r i n g) : :
(r e s t : [pathresult]) −> text(” ”) : : toHedge(t a i l) ,

o ther → toHedge(t a i l)
}) ,

empty → nil
}

}

Fig. 9. Implementation of the function toHedge.

To demonstrate the operation of our XQuery compiler, in Figure 10 we
show the query Q8 from the XMark benchmark as well as the result of its
automated translation to X-Fun. The translation follows the logic of the original
query, which joins the Xml tables of auctions and people, and for each person
displays the number of items they bought. It references two new functions. The
function toString is similar to toHedge except that it converts all the items to
string values. The function attribute creates an attribute node with the given
name and value.

On Figure 11 we give the XProc pipeline we have used in the XProc bench-
mark. The X-Fun implementation of two of the mentioned XProc steps is given
on Figure 12. The main X-Fun program is then simply a function composition
of the given steps.

5 Implementation and Experiments

We have implemented a proof-of-concept X-Fun language evaluator in the Java
programming language. We have instantiated X-Fun with the Xml data model,
using standard Java libraries for manipulating Xml trees. We have used XPath
as the path language, as implemented by Saxon. We have used standard tech-
niques for implementing functional languages, using the heap to store the values
and the environment of the program and a stack for representing recursive func-
tion calls. We reduce an expression in all possible positions in an arbitrary order.

We have attempted to interface our implementation with Tatoo, a highly
efficient evaluator of an XPath fragment based on [1]. Unfortunately, the penalty

f o r $p in / s i t e / people / person
l e t $a :=

f o r $t in / s i t e / c l o s e d a u c t i o n s / c l o s e d a u c t i o n
where $t /buyer/@person = $p/@id
return $t

re turn <item person=”{$p/name/ text ()}”>{ count ($a)}</item>

⇓
fun input : tree−>hedge {

l e t r = addTree(input) i n
l e t ca = evalPath(”$r / s i t e / c l o s e d a u c t i o n s / c l o s e d a u c t i o n ”) i n
mappathresult→tree (fun p : pathresu l t−>t ree {

element(” item ” ,
attribute(” person ” , toString(evalPath(”$p/name/ text () ”)))
: : toHedge(

l e t a = evalPath(”$ca [buyer/@person = $p/@id] ”) i n
evalPath(” count ($a) ”)

)
)

} , evalPath(”$r / s i t e / people / person ”))
}

Fig. 10. XMark query Q8 and the result of its compilation to X-Fun.

<p : s p l i t −sequence name=” s p l i t ” t e s t=”//b”>
<p : input port=” source ” s e l e c t=”//a”/>

</ p : s p l i t −sequence>

<p:pack wrapper=” pa i r ”>
<p : input port=” a l t e r n a t e ”>

<p :p ipe s tep=” s p l i t ” port=”not−matched”/>
</ p : input>

</ p:pack>

<p:wrap−sequence wrapper=” sequence ”/>

Fig. 11. XProc pipeline used in the XProc benchmark.

s p l i t = fun (l i s t , t e s t) : [node]× (node→ bool)→ [node]× [node] {
match l i s t {

head : : t a i l →
match s p l i t (t a i l , t e s t) {

(matched , notmatched) → i f t e s t (head)
then (head : : matched , notmatched)
e l s e (matched , head : : notmatched)

}
empty → (n i l , n i l)

}
}

pack = fun (f i r s t , second) : [node]× [node]× label→ [node] {
match f i r s t ∗ second {

h : : t →
l e t (fh , f t) = match f i r s t {

h : : t → (toHedge(evalPath[node] (”$h/node () ”)) , t)
empty → (n i l , n i l)

} i n
l e t (sh , s t) = match second {

h : : t → (toHedge(evalPath[node] (”$h/node () ”)) , t)
empty → (n i l , n i l)

} i n
addTree(makeTree(wrapper , fh ∗ sh)) : : pack (f t , st , wrapper)

empty → n i l
}

}

Fig. 12. Compilation of XProc steps

of crossing the language barrier (Tatoo is implemented in OCaml) shadowed
all performance gains from a faster implementation, so we could not perform any
significant experiments. To see the difference in performance in using a faster
XPath implementation, we would need to implement X-Fun in OCaml as well.

We have also implemented the compilers of Xslt and XQuery into X-Fun.
In order to support real-world Xslt and XQuery, they need support for ad-
ditional features, like modules and various optional attributes of expressions in
these languages (e.g., grouping with the group-starting-with attribute, etc.).
However, none of these limitations are fundamental and they are not imple-
mented because of their volume. The supported fragment is wide enough to run
all queries from the XMark [15] benchmark.

We don’t have an XProc compiler implementation, but for the purposes of
testing we have run X-Fun on manually translated programs.

5.1 Experiments

To evaluate the performance of our implementation, we have compared it with
the leading industry tool, the Saxon Xslt and XQuery processor. To compare
our performance on XProc pipelines, we have used Calabash, the most fre-
quently used XProc processor, as baseline. The tests were run on a computer
with an Intel Core i7 processor running at 2.8 GHz, with 4GB of RAM and a
SATA hard drive, running 64-bit Linux operating system.

First, we have compared the running time of our implementation on XQuery
programs. We used the queries from the XMark benchmark, and the results are
in Figure 13. The tests show that the running time of both tools is comparable.
X-Fun is faster in case of simple queries (Q6, Q7, Q15, which contain just a simple
loop), while Saxon is faster on queries involving joins (e.g., Q8, Q9, Q11). On
the rest of queries our implementation of X-Fun is at most 20% slower that the
competition, which we consider a good result as Saxon is a highly optimised
industry tool, while we have not spent much time optimising the performance
of our X-Fun implementation.

Query X-Fun Saxon
Q1 13.5 10.9
Q2 13.6 12.9
Q3 14.0 12.5
Q4 16.7 12.8
Q5 17.2 13.8
Q6 11.5 13.6
Q7 11.4 12.5

Query X-Fun Saxon
Q8* 962 592
Q9* 1235 705
Q10 314 222
Q11* 650 410
Q12 595 317
Q13 20.5 11.6
Q14 14.5 12.8

Query X-Fun Saxon
Q15 12.0 14.4
Q16 13.6 11.8
Q17 13.9 12.4
Q18 14.4 12.5
Q19 20.8 15.4
Q20 13.8 12.0

Fig. 13. Running time in seconds of X-Fun and Saxon on queries from the XMark
benchmark on a 500 MB document. The three queries marked with ‘*’, due to their
complexity, were run on a 300 MB document.

For the Xslt test, we used a transformation publishing an address book to
Html. The transformation in question is a more elaborate version of the program
in Figure 7, and it includes about 40 XPath expressions. The tests show that
Saxon is about 4 times faster than our tool (for example, 15.7 vs. 63 seconds
on a 200 MB document) and that the time of both tools scales linearly with the
document size.

In the XProc comparison, we have a simple pipeline consisting of 4 steps.
First, it selects subtrees from the input document, splits the resulting sequence
into two based on the presence of some node. The documents from the two
sequences are then joined into pairs and these pairs are concatenated to form a
single document again. We have compared the performance of Calabash with
our implementation of the pipeline in X-Fun. Both implementations show linear
scalability with respect to size of the input and the pipeline, as can be seen in
Figures 14 and 15 (for scaling the pipeline size, we simply composed the described
pipeline with itself). However, our own implementation is consistently at least
two times faster, and for the larger pipelines the difference is even more apparent.
While the relatively low processing speed per megabyte can be explained by the
need to create many small documents (the element per megabyte density is much
higher compared to the previous tests), it is surprising to see an implementation
specifically designed for processing XProc be outperformed by our unoptimised
implementation of the pipeline steps.

Document size X-Fun Calabash
2 MB 8.7 s 16.6 s
4 MB 15.3 s 32.6 s
6 MB 23.1 s 51.8 s
8 MB 39.5 s 78.7 s

Fig. 14. Performance of X-Fun and Cal-
abash on a fixed pipeline with varying
input tree size

Pipeline size X-Fun Calabash
1 8.7 s 16.6 s
2 12 s 75.8 s
3 16 s 136.6 s
4 22 s 198.6 s

Fig. 15. Performance of X-Fun and Cal-
abash on a 2 MB document with varying
pipeline size

6 Conclusion and future work.

We have presented X-Fun, a language for processing data trees and shown that
can serve as a uniform programming language for Xml processing and as a
uniform core language for implementing XQuery, Xslt, and XProc on top
of any existing XPath evaluator. Our implementation based on Saxon’s in-
memory XPath evaluator yields surprisingly efficient implementations of the
three W3C standards, even there is a lot of space left for optimisation. We
have obtained results which are a match for the Saxon’s XQuery and Xslt
evaluators and in the case of XProc, first results show that we are already
faster than Calabash.

Our prime objective in future is to build streaming implementations of X-
Fun, and thus of XQuery, Xslt, and XProc. The main ideas behind it are
described in a technical report [9]. These streaming implementation will serve
in the tools called QuiXQuery, QuiXslt, and QuiXProc. A first version of
QuiXslt is freely available for testing on our online demo machine [6] while
streaming is not yet available for our current QuiXProc implementation.

Acknowledgement. We would like to thank Guiseppe Castagna and Kim
Nguyen for their helpful discussions about the type system of X-Fun.

References

1. Arroyuelo, D., et al.: Fast in-memory xpath search using compressed indexes. In:
ICDE. pp. 417–428. IEEE (2010)

2. Castagna, G., Im, H., Nguyen, K., Benzaken, V.: A Core Calculus for XQuery 3.0
(2013), http://www.pps.univ-paris-diderot.fr/~gc/papers/xqueryduce.pdf,
unpublished manuscript

3. Frisch, A., Nakano, K.: Streaming XML transformation using term rewriting. In:
Programming Language Technologies for XML (PLAN-X). pp. 2–13 (2007)

4. Fülöp, Z., Vogler, H.: Syntax-Directed Semantics – Formal Models based on Tree
Transducers. EATCS Monographs in Theoretical CS, Springer (1998)

5. Hakuta, S., Maneth, S., Nakano, K., Iwasaki, H.: XQuery Streaming by Forest
Transducers. In: ICDE. pp. 952–963. IEEE (2014)

6. Innovimax, INRIA Lille: Quix tools suite, https://project.inria.fr/

quix-tool-suite/

7. Kay, M.: XSL Transformations (XSLT) Version 3.0. W3C Last Call Working Draft
(2013), http://www.w3.org/TR/xslt-30

8. Kepser, S.: A simple proof for the Turing-Completeness of XSLT and XQuery. In:
Extreme Markup Languages R© (2004)

9. Labath, P., Niehren, J.: A Functional Language for Hyperstreaming XSLT. Re-
search report (Mar 2013), http://hal.inria.fr/hal-00806343

10. Labath, P., Niehren, J.: A Uniform Programming Language for Implementing XML
Standards. Research report (Jan 2015), http://hal.inria.fr/hal-00954692

11. Maneth, S., Berlea, A., Perst, T., Seidl, H.: XML type checking with macro tree
transducers. In: PODS. pp. 283–294. ACM-Press, New York, USA (2005)

12. Neumann, A., Seidl, H.: Locating matches of tree patterns in forests. In: FSTTCS.
pp. 134–145 (1998)

13. Robie, J., et al.: XQuery 3.0: An XML Query Language. W3C Proposed Recom-
mendation (2013), http://www.w3.org/TR/xquery-30

14. Saxonica: SAXON 9.5: The XSLT and XQuery Processor, http://saxonica.com
15. Schmidt, A., et al.: XMark: A benchmark for XML data management. In: VLDB

(2002), http://www.ins.cwi.nl/projects/xmark/Assets/xmlquery.txt
16. Walsh, N.: XML Calabash, http://xmlcalabash.com
17. Walsh, N., et al.: XProc: An XML Pipeline Language. W3C Recommendation

(2010), http://www.w3.org/TR/xproc
18. Zergaoui, M., Innovimax: QuiXProc, https://project.inria.fr/

quix-tool-suite/quixproc/

http://www.pps.univ-paris-diderot.fr/~gc/papers/xqueryduce.pdf
https://project.inria.fr/quix-tool-suite/
https://project.inria.fr/quix-tool-suite/
http://hal.inria.fr/hal-00806343
http://hal.inria.fr/hal-00954692
http://www.ins.cwi.nl/projects/xmark/Assets/xmlquery.txt
https://project.inria.fr/quix-tool-suite/quixproc/
https://project.inria.fr/quix-tool-suite/quixproc/

	A Uniform Programming Language for Implementing XML Standards

