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Abstract—We consider the class of online planning algorithms
for optimal control, which compared to dynamic programming
are relatively unaffected by large state dimensionality. We in-
troduce a novel planning algorithm called SOOP that works for
deterministic systems with continuous states and actions. SOOP
is the first method to explore the true solution space, consisting
of infinite sequences of continuous actions, without requiring
knowledge about the smoothness of the system. SOOP can be
used parameter-free at the cost of more model calls, but we
also propose a more practical variant tuned by a parameter α,
which balances finer discretization with longer planning horizons.
Experiments on three problems show SOOP reliably ranks among
the best algorithms, fully dominating competing methods when
the problem requires both long horizons and fine discretization.

I. INTRODUCTION

Optimal control problems arise in numerous areas of tech-

nology. They can be modeled as Markov decision processes,

in which optimality is measured by a cumulative reward

signal that must be maximized (the return). Standard model-

based techniques for this problem are called (approximate)

dynamic programming [1], [2], and because they search for

a global solution, their complexity grows fast with problem

dimensionality. Furthermore, to be feasible in practice many

of these methods require discretized actions.

This paper is concerned with a different, online planning

class of techniques, which work in a local fashion by finding

actions on demand for each encountered state. We propose a

novel planning technique that works for deterministic systems

and continuous (though still low-dimensional) actions.

The local nature of planning methods reduces their de-

pendence on state dimensionality in comparison to dynamic

programming, and allows most methods—including ours—

to naturally deal with continuous states. At each step, an

explorative search is made through the space of possible action

sequences from the current state, after which the best first

action found is applied; the process then repeats at the next

step. Planning techniques are thus a very general type of

model-predictive control. Since computation is limited in the

online setting, the search must be efficient, and a good way

to achieve this is optimistic search, which explores the most

promising regions first. Such optimistic planning (OP) algo-

rithms are better developed in the discrete-action case [3]–[7],

with Upper Confidence Trees perhaps the most widely known

technique [3]. Our method is closer to OP for deterministic

[4] and discrete stochastic systems [7].
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Several OP methods also exist for continuous actions.

HOOT [8] and SP [9, Ch. 5] rely on the principle of Upper

Confidence Trees: they explore the space of sequences of a

given length (planning horizon) K, optimizing for the kth

action the return obtained over subsequent steps. HOLOP1 [10]

optimizes directly the K-horizon return relative to the initial

state (at k = 0). All three methods are limited by searching

for a sequence that is only optimal over horizon K, whereas

the control problem is infinite-horizon. In principle, K can be

taken sufficiently large, but this will waste computation, and

in practice K is a problem-dependent parameter.

The actual space that should be explored is that of infinitely

long continuous-action sequences. To our knowledge, the

only existing OP algorithm that does this is Lipschitzian

planning (LP) [9, Chapter 5]. LP iteratively splits the infinite-

dimensional space into hyperboxes of increasing dimension-

ality, guided by upper bounds on the return of all sequences

within a hyperbox. To compute the bounds, LP requires glob-

ally Lipschitz dynamics and rewards, with a known Lipschitz

constant. However, the system may not be Lipschitz, or even

if it is, its smoothness will usually vary across the state-

action space. In the latter case, the Lipschitz constant will be

conservative, leading to poor performance in smoother regions.

We propose here a method that does not rely on the

restrictive assumption of a known, global Lipschitz constant.

Simultaneous optimistic optimization (SOO) is exploited, an

algorithm that only requires local smoothness around an

optimum, without knowing the Lipschitz constant or indeed

even the metric [11]. We develop a nontrivial extension of

SOO to the optimization of return over infinitely long action

sequences, and call the resulting algorithm SOO for planning

(SOOP). The idea is to select at every iteration all hyperboxes

that are potentially optimal for any metric – rather than the

box with the largest upper bound in the given metric, like LP.

Then for each selected box, a choice is made on the dimension

to split further, guided by a tuning parameter (a parameter-

free variant that expands all dimensions is also possible but is

computationally less efficient).

Compared to SOO, the main novelty introduced by SOOP

is a relaxed selection procedure for potentially optimal boxes.

This is necessary because (roughly speaking) SOO would

require sorting boxes by their diameter in the unknown metric,

which is impossible in the planning problem. The relaxation

works under a weaker, reasonable assumption on the ordering

1The acronyms stand for: hierarchical optimistic optimization applied to
trees (HOOT), hierarchical open-loop optimistic planning (HOLOP), and
sequential planning (SP).



of diameters. Due to this difference and other particularities

of planning, the analysis of SOOP is currently open. However,

we expect good performance on the basis of the analysis of

SOO, which guarantees convergence to an optimum at the

most favorable rate given by any valid metric.

Note that HOOT and HOLOP also work in stochastic

problems, whereas SOOP works in deterministic ones.

Next, Section II provides background about the planning

problem, SOO, and LP, making some minor improvements to

LP along the way. Section III introduces SOOP, and Section

IV empirically compares it with LP, with HOLOP, which

is selected as a state-of-the-art finite-horizon method, and

with OP for deterministic systems [4], selected to provide a

discrete-action baseline. Section V concludes the paper.

II. BACKGROUND

A. Problem setting

We consider discrete-time, deterministic optimal control

problems with continuous state spaces X and continuous

action spaces U . The system state changes according to

x′ = f(x, u), where f : X×U → X is the transition function,

and the quality of transitions is measured by the bounded

reward function r(x, u, x′), where r : X × U × X . All the

algorithms we consider work locally for a given state of the

system, so throughout the development we focus on such a

state. Denote this state by x0, after setting by convention the

current time to 0. Keeping in mind that the entire optimization

problem depends on x0, for notation simplicity we keep this

dependence implicit in the sequel.

Define a sequence of K actions uK =
(u0, u1, . . . , uK−1) ∈ UK , and u∞ ∈ U∞ an infinitely-long

action sequence. The space of solutions that our method will

explore is U∞. The discounted value of a sequence u∞ is:

v(u∞) =

∞
∑

k=0

γkr(xk, uk) (1)

where xk+1 = f(xk, uk), and γ ∈ (0, 1) is the discount factor.

The optimal value is:

v∗ = sup
u∞

v(u∞) (2)

The truncated return of a sequence with finite length K is:

R(uK) =

K−1
∑

k=0

γkr(xk, uk) (3)

The following assumptions are imposed on the problem.

Assumption 1: (i) The action is scalar. (ii) The action space

is U = [0, 1]. (iii) Rewards are bounded in the interval [0, 1].
Part (i) is for convenience only, as it allows us to introduce

the derivations and the algorithm in a simple fashion. Part

(ii) allows any closed interval by translation and scaling,

but noncompact action spaces are forbidden. Part (iii) is not

restrictive for problems that do not have terminal states2; in

2Terminal states can be used to represent e.g. “goal achieved” and “failure”
situations. Whatever the action applied in a terminal state, the system cannot
escape it and the reward is always zero.

these problems the rewards can be normalized to [0, 1] without

changing the optimal solutions.

In the scalar case, U∞ can be visualized as an infinite

dimensional hypercube on which each dimension represents

the action space at that step. The goal of continuous-action

planning is to explore U∞ in such a way that after a compu-

tational budget is exhausted, a near-optimal action sequence u

is returned. The method we develop explores U∞ by iteratively

splitting it into hyperboxes (boxes, for short). Such a box

Ui ⊆ U∞ is the cross-product of a sequence of subspaces

(µi
0, . . . , µ

i
Ki−1, U, U, . . . ) where µi

k ⊆ U and Ki − 1 is

the deepest discretized dimension; for all further dimensions

µi
k = U . Thus Ki is the number of discretized dimensions, and

might be seen as a “length” of Ui. A box is further explored

by trisecting either the subspace of an already discretized di-

mension, or the space U for the first undiscretized dimension,

Ki. Thus trisecting dimension k corresponds to discretizing

the action at step k. In Fig. 1 an example exploration of U∞

is shown.
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Fig. 1. Example partition of U∞ after 3 trisections. Dimensions 4 and higher
are left out of the figure.

Define δi
k to be the size of subspace µi

k in box Ui:

δi
k =

{

maxu∈µi
k
|ui

k − u| for 0 ≤ k < Ki,

1 for k ≥ Ki

(4)

where ui
k is the action at the center of µi

k.

B. Optimistic optimization

SOOP is based on simultaneous optimistic optimization

(SOO), while the closest related planning method, LP, is based

on deterministic optimistic optimization (DOO). Next, DOO

and SOO are introduced [11].

The problem is to maximize some function f : X → R,

assumed locally Lipschitz around an optimum x∗:3

f(x∗)− f(x) ≤ l(x, x∗) ∀x ∈ X (5)

where x∗ ∈ arg maxx∈X f(x) and l : X ×X → [0,∞) is a

semimetric (which for convenience incorporates the Lipschitz

constant). The optimization proceeds by hierarchically parti-

tioning the domain X . This partitioning is represented by a

tree structure T in which each node (d, i) is labeled by a point

xd,i and represents a subset of X denoted Xd,i ∋ xd,i. Here,

3For the duration of Section II-B only, we reuse notations f , X , and x to
mean the optimized function, function domain, and a point in the domain.



d ≥ 0 is the depth in the three and i is the node index at a

given depth. The root of the tree represents the entire domain

X , and the tree is defined so that the children of a node form a

partition of the set represented by their parent. The partitioning

procedure must ensure, roughly speaking, that the diameters

of all sets at a certain depth are equal, and that the diameter

sequence ∆(d) = supx∈Xd,i
l(xd,i, x),∀i is decreasing with

the depth, e.g. exponentially. (More precisely, the diameters at

any d are only required to be upper-bounded by ∆(d), and of

the order ∆(d), but since the idea is the same we explain things

more simply by taking the diameters at d equal.) Furthermore,

from a computational perspective the partitioning should be

easy to generate and set diameters easy to compute. Fig. 2

exemplifies such a partitioning. Finally, the set of leaves of

the currently explored tree is denoted by L.
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Fig. 2. Illustration of the tree structure that is used by optimistic optimization.
In this example, X is an interval and binary partitions are used.

DOO works by partitioning a set that may contain the

optimum of f . It does this by assigning upper bounds to all

leaf sets Xd,i, (d, i) ∈ L:

b(Xd,i) = f(xd,i) + ∆(d) (6)

so that b(Xd,i) ≥ f(x), ∀x ∈ Xd,i. Then at each iteration,

an optimistic leaf set, which maximizes the upper bound, is

further partitioned. At the end, the point with the largest value

in the tree is returned. DOO is summarized in Algorithm 1.

Algorithm 1 Deterministic Optimistic Optimization

Input: function f , computation budget n, partitioning of X
1: initialize T with root X0,0

2: for t = 1 to n do

3: (d∗, i∗)← arg max(d,i)∈L b(Xd,i)
4: expand (d∗, i∗) (partition Xd∗,i∗ ), add children to T
5: end for

Output: x∗ = arg max(d,i)∈T f(xd,i)

DOO assumes knowledge of l by using ∆(d) in the upper

bounds. The alternative, SOO, does not require this knowl-

edge. Instead, at each round, SOO simultaneously expands

all potentially optimal leaf sets: those for which the upper

bound could be largest under any semimetric l satisfying the

conditions. With a little thought, a set can only contain a

largest upper bound if its sample value is at least as good

as the values of all sets with diameters larger than its own; we

say that the set is not dominated by larger sets. Since further,

∆(d) decreases with d, we only have to compare with leaves

higher up the tree. At each iteration t, the algorithm expands

at most one leaf set at each depth. If we define L≤d as the

set of leaf nodes having depths d′ ≤ d, then a leaf (d, i) is

only expanded if f(xd,i) = max(d′,i′)∈L≤d
f(xd′,i′); if there

are several such leaves one is chosen arbitrarily. This selection

procedure is illustrated in Figure 3. SOO additionally limits

the tree depth at each iteration t with a function dmax(t), a

parameter of the algorithm that controls the tradeoff between

deeper or more uniform exploration. Algorithm 2 summarizes

SOO. Note that in the form given here, SOO may take more

than the budget n to finish the last iteration.
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Fig. 3. Illustration of set selection in SOO. Depth d increases to the left,
while set diameter ∆ increases to the right. Samples are shown as ’x’, and
the samples of sets selected for expansion are circled and colored red.

Algorithm 2 Simultaneous Optimistic Optimization

Input: function f , depth function dmax(·), budget n,

partitioning of X
1: initialize T with root X0,0; t← 1
2: while t ≤ n do

3: fmax ← −∞
4: for d = 0 to min(depth(T ), dmax(t)) do

5: i∗ ← arg maxi f(xd,i)
6: if f(xd,i∗) ≥ fmax then

7: expand (d, i∗), add children to T
8: fmax ← f(xd,i∗)
9: t← t + 1

10: end if

11: end for

12: end while

Output: x∗ = arg max(d,i)∈T f(xd,i)

DOO and SOO have similar guarantees, converging to

near-optimal solutions at rates depending on how “peaky”

the function is around the optimum in the semimetric l. Of

course, SOO pays a price for not knowing the semimetric by

expanding several sets at each iteration. But not requiring the

semimetric also has a surprising advantage: SOO converges

at the fastest rate allowed by any semimetric. The difficult

issue is, as the planning setting below will illustrate, to define

the hierarchical partitioning in such a way that the diameters

nicely decrease in the unknown semimetric.



C. Lipschitzian planning

LP [9] applies DOO to optimize the return (1) over the space

U∞ of infinite action sequences. The form of LP we introduce

makes some mild changes to the version in [9], which we point

out later. The dynamics f and rewards r are assumed to be

Lipschitz with a known constant L:

‖f(x, u)− f(x′, u′)‖ ≤ L(‖x− x′‖+ |u− u′|)

|r(x, u)− r(x′, u′)| ≤ L(‖x− x′‖+ |u− u′|)
(7)

To apply DOO, first a semimetric l is needed. After some

simple calculations that exploit the Lipschitz property, the

difference between the rewards obtained at step k by two

sequences u∞,u′
∞ is bounded as follows:

|r(xk, uk)− r(x′
k, u′

k)| ≤

k
∑

j=0

Lk−j+1|uj − u′
j |

Using this, we construct the semimetric as the following upper

bound on the difference between the returns of the sequences:

l(u∞,u′
∞) =

∞
∑

k=0

γk min{1,

k
∑

j=0

Lk−j+1|uj − u′
j |} (8)

where the reward difference bounds are additionally capped

by 1 (recall that the rewards are bounded in [0, 1]).
The partitioning scheme is trisection-based, as explained in

Section II-A. Since the samples are infinite action sequences,

the algorithm never has access to a complete sample or its

value (the infinite-horizon return). Fortunately this is not a

problem, because the metric l can still be used to provide an

upper bound on the returns of sequences in a box discretized

only up to some finite dimension Ki − 1:

b(Ui) =

Ki−1
∑

k=0

γk min{1, ri
k +

k
∑

j=0

Lk−j+1δi
j}+

γKi

1− γ
(9)

where ri
k is the reward obtained at step k by applying the

(finite) sequence u
i
Ki

at the center of the box, and δi
k are the

subspace sizes. Each term of the outer sum bounds the reward

attainable at step k by any sequence in the box, while the

fraction covers the reward attainable from step Ki onwards.

The difference b(Ui) − R(ui
Ki

), see (3), can be informally

thought of as the diameter of Ui .

LP works by following the principle of DOO: at each

iteration, it selects an optimistic box Ui∗ that has the largest

upper bound b(Ui), and further refines this box by trisecting

one of its dimensions. To complete the algorithm, we only have

to specify the dimension selection procedure. Each dimension

k < Ki∗ in turn is assumed trisected, and the upper bound for

the resulting middle box is computed, which will be smaller

due to the reduced subspace size δi∗

k /3. To rank the first

undiscretized dimension Ki∗ , the center reward is assumed to

be 0, and the subspace size will be 1/3. Finally, the selected

dimension is one that reduces the bound the most.

Once an imposed budget n of calls to the model (f, r) has

been depleted, the algorithm returns a center sequence with

the largest return among all the boxes.

The original LP in [9] is different in the following ways.

(i) The semimetric (8) and upper bound (9) are changed to

cap individual reward bounds to 1 only after reaching the last

k for which the reward bound is smaller than 1 (denote it by

K ′); thus (8) and (9) are tighter. (ii) If K ′ < Ki∗ − 1 for the

optimistic box, only dimensions up to K ′ are considered for

trisection, whereas we still consider all dimensions including

Ki∗ . This avoids some pathological behavior such as when the

first-step rewards r0 are always 1, in which case the original

LP would keep refining the first action dimension without ever

going deeper. Finally, (iii) when a dimension k < Ki∗ − 1 is

trisected, we compute all the rewards up to Ki∗−1 for the left

and right center action sequences, whereas original LP only

computes the kth rewards. This allows a fair comparison with

SOOP, which trisects in the same way. It may either increase or

decrease performance with respect to the original LP (increase

because the initial upper bounds of the left and right boxes are

tighter, decrease because more model calls are spent).

III. SOOP

Determining the Lipschitz L constant is hard, and, in fact,

it must usually be treated as a tuning parameter of LP. Even

so, f or r may simply not be Lipschitz. If they are, a

global Lipschitz constant may underestimate their smoothness

in large parts of the domain, leading to inefficient partition-

ing. Conversely, overestimating the smoothness (taking L too

small) is dangerous because the upper bounds become invalid

and the DOO guarantees are lost.

Therefore, we now propose an optimistic planning method

that does not require a Lipschitz constant or knowing the

semimetric, by exploiting the principles of SOO. Since the

trisection scheme of LP is also used, many of the building

blocks for the new method are already available. We still have

to introduce the crucial insight that connects the pieces to-

gether into the overall, novel algorithm. We call this algorithm

SOOP (Simultaneous Optimistic Optimization for Planning).

A. Potentially optimal boxes. Generic SOOP algorithm

The main step in SOO is selecting potentially optimal sets.

This is ideally done by sorting the sets by their diameters, and

then only selecting sets with values undominated by the values

of larger-diameter sets. Note that the diameters themselves

need not be known, only their ordering; in Algorithm 2,

because diameter decreases with increasing depth, the depth d
acts as a proxy for the ordering. Unfortunately, such a global

ordering is very difficult to define for the planning problem.

To address this difficulty, we relax the SOO set selection

procedure.

First, because depth no longer translates into a diameter

ranking, we stop looking at the sets as being organized into

a tree. Instead, the algorithm just works with a collection of

sets (boxes in the planning context), which does not affect

its validity. We define a notion of partial ordering on these

boxes, and impose an assumption. For any box Ui, denote by

sk
i ≥ 0 the number of times the box has been trisected along

dimension k.



Definition 2: A box Uj is said to be partially greater than

Ui, denoted Uj � Ui, iff ∀k ≥ 0, sj
k ≤ si

k.

Assumption 3: If Uj � Ui, then diameters ∆(Uj) ≥ ∆(Ui),
where ∆(U) = sup

u∞,u′
∞∈U l(u∞,u′

∞) is the box diameter

in the unknown semimetric l.
We expect that many useful semimetrics will satisfy As-

sumption 3. For instance, it can be shown that the Lipschitz

semimetric (8) satisfies it. Under Assumption 3, we modify

the box selection procedure as follows: a box Ui is potentially

optimal and will be expanded if it is undominated by any

Uj � Ui; that is, if for all Uj � Ui, R(ui
Ki

) ≥ R(uj
Kj

). So,

Ui will be compared only with some of the boxes with larger

diameters: those that are partially greater than it. It will still

be expanded if it is dominated by some larger box that is not

partially greater. Thus the new criterion is safe (all boxes that

should be expanded are indeed expanded) but conservative

(some boxes that ideally should not be expanded perhaps

will be). Conservativeness implies the algorithm requires more

samples than an ideal application of SOO.

The final step is specifying how to select the dimension

(action step) for trisection. Ideally, the dimension that leads to

the largest decrease of the diameter in l should be trisected,

but of course finding this decrease is not possible since l is

unknown. We leave this procedure open in the general method,

summarized as Algorithm 3, and discuss alternatives below.

Note that the algorithm may take more than n transitions to

complete the last iteration (expand the last batch of potentially

optimal boxes).

Algorithm 3 SOO for Planning

Input: state x0, model (f, r), budget of model calls n
1: initialize collection of boxes with U1 = U∞

2: repeat

3: select potentially optimal boxes:

I∗ = {i | ∀ j s.t. Uj � Ui, R(ui
Ki

) ≥ R(uj
Kj

)}
4: for i ∈ I∗ do

5: select dimensions κ ⊆ {0,Ki} to trisect

6: for k ∈ κ do

7: trisect dimension k,

add resulting boxes to the collection

8: end for

9: remove parent Ui from the collection

10: end for

11: until budget n has been depleted

Output: best sequence found u
i∗

Ki∗
, i∗ ∈ arg maxi R(uKi

i )

B. Dimension selection

Several alternatives for dimension selection are possible. (i)

The simplest is to just trisect all dimensions {0,Ki}. This is

safe, but costly in terms of model calls and computation.

Otherwise, one can conjecture that due to the discounting,

which makes earlier actions more important, these actions

should be discretized more finely. Thus a second alternative

is to (ii) trisect those dimensions for which the resulting

boxes are discretized more finely for smaller k, formally:

si
k ≥ si

k+1 ∀k ≥ 0. Then by induction, all boxes created by the

algorithm satisfy the property. (iii) With the same conjecture,

an even less costly heuristic may be derived that only selects

one dimension. This is done by ranking dimensions with a

new discount factor α ∈ (0, 1):

κ = min{arg max
k∈{0,Ki}

αk(1/3)sk
i } (10)

The tuning parameter α trades off discretization accuracy and

planning depth: small values will lead to finer discretizations

close to the root, while with a larger value larger planning

horizons are reached. In this sense, α is similar to the depth

function dmax in SOO. With this criterion as well, all boxes

produced are discretized more finely for smaller k.

Since in preliminary experiments trisecting many dimen-

sions greatly increased computational costs without large

performance benefits, we use (iii) in the sequel.

To extend the algorithm to multiple action variables, the

partial ordering and the dimension selection must be changed.

Denoting the action variable index by m, the partial ordering

can be changed by requiring that all variables m at every step

k are split at most as many times in Uj as in Ui. Dimension

selection can be performed by extending (10) to compare

also between the variables at each k; thus a pair (k,m) that

maximizes the discounted size would be selected, breaking

ties in favor of small k and arbitrarily among m.

We close this section by discussing the amount of model

calls required for trisections. Trisecting a box U of depth K
along dimension k requires 3 model calls when k = K, and

2(K − k) if k < K. This is because in the former case all

three new boxes inherit the entire center sequence uK of U ,

with the associated rewards, and must only simulate the next

action (step K). When k < K, the center box retains again the

complete information, whereas the left and right boxes only

inherit the subsequence and rewards up to k− 1, and the tails

from k to K − 1 must be simulated.

IV. EXPERIMENTS

To determine the practical effectiveness of SOOP, it will be

tested on three problems, in which it will be compared with

three other state-of-the-art OP algorithms.

The first algorithm is OP for deterministic systems (OPD)

[4], which serves as a discrete-action baseline. OPD applies

DOO to search the space of infinite sequences of M discrete

actions. The metric is l(u∞,u′
∞) = γk(u∞,u′

∞)/(1 − γ),
where k(u∞,u′

∞) is the first step where the two sequences

are different. The hierarchical partition splits at each depth d
the considered box along dimension k = d, into M subboxes:

one for each discrete action. So, for OPD the depth in the tree

is equal to the time step.

The other two algorithms support continuous actions: they

are LP, the closest relative of SOOP, and HOLOP [10]. The

latter is selected as a representative for the class of finite-

horizon planning algorithms, which also includes HOOT [8]



TABLE I
ALGORITHM PARAMETERS FOR THE DC MOTOR, WITH ALL ATTEMPTED VALUES AS WELL AS THE BEST VALUES FOR EACH n.

n = 100 n = 500 n = 1000 n = 2500 n = 5000

SOOP, α ∈ {0.1, 0.2, . . . , 0.9} 0.8 0.7 0.8 0.7 0.7
OPD, M ∈ {3, 5, . . . , 15} 3 3 3 3 5

LP, L ∈ {0.1, 0.2, . . . , 1.5} 0.9 0.6 0.6 0.7 0.5
HOLOP, K ∈ {5, 10, 15, 20, 25, 30, 40, 50, 75, 100} 5 5 5 5 5

and SP [9]. Unlike HOOT and SP, HOLOP solves a well-

defined optimization problem over K-step action sequences.

For each problem, the algorithms are executed for several

values of the budget n of model calls. Like for SOOP above,

the algorithms are not stopped mid-iteration, so they may

take more than n calls to complete. For each value of n, the

other algorithm parameters are optimized over a grid, and the

best performance is reported. The parameters are: for SOOP,

the discount factor α for dimension selection; for OPD, the

number of discrete actions M (for every M , a uniform grid

of actions is generated, covering the whole action space); for

LP, the Lipschitz constant L; and for HOLOP, the horizon

K. Since HOLOP generates solutions randomly, it is run 10
times for each experiment and a 95% confidence interval on

the mean performance is computed. The best experiment is

the one with the largest upper confidence bound.

A. DC motor

The first problem concerns a DC motor with states: shaft an-

gle x1 ∈ [−π, π] rad, angular velocity x2 ∈ [−15π, 15π] rad/s,

and action: voltage u ∈ [−10, 10] V. The dynamics are linear:

f(x, u) = Ax + Bu, A ≈

[

1 0.0095
0 0.9100

]

, B ≈

[

0.0084
1.6618

]

The goal is stabilizing both states at zero, and is described by

the unnormalized reward function:

r̃(x, u, x′) = −xT Qx−uT Ru, Q = diag(1, 0.001), R = 0.05
(11)

with discount factor γ = 0.95. Using the known variable

bounds, the reward is normalized (scaled and translated) into

[0, 1], and for the sake of applying the continuous-action

algorithms, the same is done for the action.

This first problem is chosen because it is simple and

can be solved with short planning horizons. Nevertheless,

continuous (or finely discretized) actions are necessary for

good performance, due to the quadratic action penalty. The

four planning algorithms are applied in receding horizon, from

the initial state [−π, 0]T and for a duration of 1 s (100 steps).

Table I shows the parameters of the algorithms, where each

row corresponds to an algorithm, and each column to a budget

value n. The header column shows all values attempted for

the algorithm’s parameter (these are the same for all other

problems, as well, so they will not be shown again), while the

other columns show the best value for the corresponding n.

Figure IV-A shows the best returns obtained.

SOOP is clearly better than OPD, as expected from the

fact that coarse actions are not sufficient. An interesting

observation is that despite this, discretizing finely is not worth
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Fig. 4. Performance for the DC motor. For HOLOP, the mean performance
with its 95% confidence interval is shown.

the additional price paid in terms of model calls in OPD (since

a larger tree must be explored), not even for larger budgets.

Only for n = 5000 do we get better performance by taking

M = 5 discrete actions.

SOOP and LP are performing similarly: LP is better for

small budgets, while SOOP overtakes it for larger ones. Ap-

parently, a global Lipschitz assumption works in this problem,

which is not surprising due to its simplicity.

HOLOP is doing worse than all others, and looking at con-

trolled trajectories (not shown here due to space limitations)

this is due to very coarse actions which are not able to stabilize

the system. Thus, for the budgets considered here, HOLOP

cannot sufficiently refine the solution.

B. Inverted pendulum swingup

m

motor

α

Fig. 5. Inverted pendulum schematic.

The second problem is swinging up and stabilizing an

underactuated inverted pendulum rotating in a vertical plane,

see Figure 5. Due to limited power, from certain states (e.g.,

pointing down) the pendulum needs to be swung back and

forth to gather energy, prior to being pushed up and stabilized.

The first state x1 = α is the angle and wraps around in the

interval [−π, π) rad; the second state is the angular velocity

x2 = α̇ ∈ [−15π, 15π] rad/s. The action u ∈ [−3, 3] V is

the motor voltage (see [2], Section 4.5.3 for the dynamics).



The goal of stabilizing the pendulum pointing up is expressed

by quadratic rewards of the form (11) with Q = diag(1, 0),
R = 0.3, and the discount factor is γ = 0.95. Like before,

rewards and actions are normalized into [0, 1].
While it is a standard benchmark in control and dynamic

programming, this problem nevertheless supplies an interesting

challenge to planning algorithms: the solution must be planned

over a longer horizon, and solutions that seem good over a

short horizon will not work, instead just pushing the pendulum

in one direction. Furthermore, continuous actions are neces-

sary, firstly due to the action penalty, and secondly to properly

stabilize the pendulum in the unstable, pointing-up position.

The planning algorithms are applied from an initially pointing

down position, x = [−π, 0]T , for a duration of 5 s (100 steps).

Table II shows the algorithm parameters and Figure IV-B the

best returns.

TABLE II
PARAMETERS FOR THE INVERTED PENDULUM.

n = 500 1000 5000 10000 15000

SOOP, α = 0.9 0.8 0.7 0.7 0.7
OPD, M = 3 3 3 3 5

LP, L = 0.1 0.2 0.1 0.1 0.7
HOLOP, K = 10 10 10 10 10
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Fig. 6. Performance for the inverted pendulum.

The relationships between SOOP, OPD, and HOLOP mirror

those in the DC motor problem. However, LP now ranks as

poorly as HOLOP. Figure 7 (on the next page) shows repre-

sentative controlled trajectories with SOOP and LP. LP applies

very coarse actions, while SOOP uses fine discretization to

behave near-optimally.4 The reason is found in the small

values of L: LP prefers to search longer-horizon solutions

rather than discretize finely. Unfortunately, even for this coarse

discretization it does not manage a good swing-up. While the

reasons are not entirely clear, one hypothesis is that unlike for

the DC motor, in the swing-up problem the Lipschitz constant

varies, with the system behaving differently around equilibria

than around the critical swing-up points; and that LP cannot

deal with that.

Regarding α in SOOP, for tight budgets larger values are

preferred, which means a longer horizon is sought at the

expense of discretization; as more samples become available

4This is determined by comparing with near-optimal solutions found with
dynamic programming, which is possible in this low-dimensional problem.

and a sufficient horizon is ensured, the balance shifts back

towards discretization. This behavior is intuitive, since for too

short horizons a good swing-up cannot be achieved, and fine

actions become irrelevant.

Finally, we look at the computational cost of the algo-

rithms, see Figure IV-B. Besides the fact that in our Matlab

implementation the algorithms are not yet ready for real-time

control, we notice that SOOP and OPD have similar costs,

and HOLOP is somewhat faster. LP is slower, but this is at

least partly due to our implementation, which is optimized for

many sequences with similar lengths; whereas around the goal

state, LP typically expands a few very long sequences.
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Fig. 8. Execution time for the inverted pendulum, for optimized parameters.

C. Two-link robot arm

m1

l2

l1

motor

Fig. 9. Robot arm.

Finally, we consider a two-link robot arm actuated only in

the middle joint, which has 4 states (angles θ1, θ2 of the

joints plus their angular velocities) and 1 action u (motor

torque). It can also be seen as a horizontally-oriented acrobot.

The model equations are found in [2], Section 4.5.2. The

link lengths are 0.15 and 0.25 m, both masses are 1 kg and

concentrated at the ends of the links, and there is neither

inertia nor friction. The task is stabilization to zero starting

with both links at rest at angle −π, and the reward is quadratic

with Q = diag(1, 0, 1, 0) and no action penalty. Table III and

Figure IV-C show the results. that OPD and discrete actions do

well also in this problem, with SOOP trailing closely behind

and doing better than LP and HOLOP.

Looking at Table III and Figure IV-C, OPD and discrete

actions do well in this problem, with SOOP trailing close be-

hind. Note that in problems where discrete actions work well,

SOOP cannot be expected to outperform OPD, mainly because

OPD searches the smaller space of discrete-action sequences,
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Fig. 7. Swing-ups of the inverted pendulum with SOOP and LP, for n = 5000 and optimized parameters.

which still contains a good solution. Nevertheless, here SOOP

still manages to find a good solution in the larger, continuous-

action space, obtaining similar performance to OPD and still

outperforming LP and HOLOP, which apparently search the

larger space less efficiently.

TABLE III
PARAMETERS FOR THE TWO-LINK ROBOT ARM.

n = 500 1000 5000

SOOP, α = 0.5 0.6 0.5
OPD, M = 5 7 7

LP, L = 0.1 0.9 1.1
HOLOP, K = 5 5 5
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Fig. 10. Performance for the two-link robot arm.

V. CONCLUSIONS

We introduced SOO for Planning, a novel planning al-

gorithm for deterministic, continuous-action Markov decision

processes. In extensive experiments, SOOP consistently ranked

among the best algorithms, fully dominating competing meth-

ods when the problem requires both long horizons and fine

discretization. In problems where discrete actions do well,

discrete-action planning starts at an advantage; nevertheless, in

our example that had this property, SOOP could still be applied

with minimal loss of performance, unlike its continuous-

actions competitors.

The main open issue to address in future work is analyzing

the performance of SOOP as a function of the budget n of

model calls, which should build on the analysis of SOO [11].

In addition, more experiments are required to better understand

the effect of the various dimension selection criteria.

REFERENCES

[1] D. P. Bertsekas, Dynamic Programming and Optimal Control, 3rd ed.
Athena Scientific, 2007, vol. 2.
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